Jump to content
Sign in to follow this  
Guest PhysicsNews

Kodak's Nuclear Reactor Explained

Recommended Posts

Guest PhysicsNews


This week, the Internet has been buzzing with news that Kodak had a nuclear facility housed in a basement at its Rochester, NY industrial park for over thirty years. Until 2007, Kodak used the reactor to check for impurities in samples, but the reactor wasn't widely known until the local Democrat and Chronicle newspaper ran an article late last week. Many have questioned why the company known for its photography products would need a nuclear device, and some alarmist articles have surfaced.

Gizmodo, for instance, began their article with extreme hyperbole while noting Kodak's recent bankruptcy:

"Kodak may be going under, but apparently they could have started their own nuclear war if they wanted, just six years ago."

Actually, Kodak didn't even have enough nuclear fuel to develop a single warhead. Refrigerator-sized nuclear reactors like the one found in Kodak's basement have key differences with nuclear reactors found at power plants, and Kodak certainly couldn't have ignited World War III alone. In fact, these research reactors can be found on several university campuses, and they are operated under strict guidelines without any nefarious intentions.

Researchers working at Kodak wanted to detect very small impurities in chemicals and impurities, and Neutron Activation Analysis (NAA) proved to be one of the best techniques to find these impurities. During NAA, samples are bombarded with neutrons, and elemental isotopes from the sample will absorb a small fraction of these neutrons.

Many of these stable elemental isotopes will become radioactive after gaining a new neutron; consequently, they will emit gamma rays. With the right equipment, researchers can measure the precise energy levels of this radiation and narrow down which elements are in the sample.

"For some elements, this is an exquisitely sensitive test," said Ken Shultis, a nuclear engineer at Kansas State University who works on the university's nuclear research reactor. "To do this [test], you need a source of neutrons."

For Kodak, that source was an isotope of Californium, a radioactive element first synthesized in 1950 with a cyclotron at the University of California Berkeley. Californium-252, the element's most common isotope, was initially used at Kodak as a neutron source by itself.

"Californium-252 is a poor man's reactor," said Shultis.

While a sample of this isotope will shed neutrons by itself, Kodak wanted more neutrons to increase the sensitivity of their analyses. That's where a small nuclear facility could help. The researchers could either collect a larger sample of Californium or use uranium plates to multiply the neutron flow from the source they already had. They opted for the uranium route.

With 3.5 pounds of uranium on-site, the reactor had far less than the roughly 100 pounds needed to develop a weapon. Strict security precautions were still taken, nonetheless.

But these types of reactors don't pose the same safety risks as bigger nuclear reactors at power plants. Power plants produce much more fission products, and they require much more extensive cooling systems, according to Shultis.

"It's inherently much safer. There's no chance of a meltdown in our research reactors," Shultis said.

Radioactive materials used at these research reactors still pose potential risks, according to Shultis. Consequently, researchers take great care when dealing with their samples. If samples become too radioactive, for instance, they can be left in the reactor pool until they decay enough to be safe.

Reactors like the one at Kansas State University and the decommissioned reactor at Kodak must meet strict guidelines determined by federal regulators. I wonder if those regulators were surprised when a photography company approached them many years ago with plans to use a small reactor. It certainly caught many people by surprise this week.

Top image of Idaho National Laboratory's Advanced Test Reactor courtesy of Argonne National Laboratory.


If you want to keep up with Hyperspace, AKA Brian, you can follow him on Twitter.




Share this post

Link to post
Share on other sites

It's funny that this "secret reactor" seems to be such a big deal in the news recently. We used this regularly in my previous life as a microelectronic engineer at Kodak, and it certainly wasn't a secret!

Share this post

Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

  • Create New...