Jump to content
  • entries
    31
  • comments
    30
  • views
    3,872

Shoot Your Grade Lab


jcstack6

390 views

In a lab recently conducted by the Physics C class, Mr. Fullerton required the class to place a textbook at a location where they predicted a ball launched by a projectile would fall. The class got one test launch to observe the behavior of the projectile and then the angle that the projectile was launched at was changed and the location of the ball when it lands had to be predicted. The class failed to calculate the final location of the ball due to improper calculations, specifically not representing certain vectors with their proper direction. In the initial lab, the distance in the y direction was thought to be positive instead of negative. This threw off our calculations for the initial velocity of the ball in the y direction and therefore made our initial velocity, the combination of the x and y components of the velocity, incorrect. Since our initial velocity was incorrectly calculated based on data for the first trial, we did not have the proper initial velocity for the projectile when the angle it was launched at changed, causing us to have the wrong final answer to where the ball would land when launched from the new angle. 

After redoing the problem and realizing what we did wrong, I came to an answer of 199.42 cm in the x direction for the distance the ball would travel in the x direction before hitting the ground. By changing the y direction value for the first trial calculation to a negative number, this corrected the initial velocity in the y direction and thereby corrected the overall initial velocity. Then when calculating the value the ball would travel in the x direction for the second trial, checking over that all vectors had the correct associated directions, the time was first calculated by utilizing the y plane using the equation dy = vt + 1/2at^2. The time found for how long the ball was in the air was .427s. The time was then used in the x plane to find the distance using the equation dx = vt. This equation yielded the final answer of 199.42 cm as the distance the ball traveled in the x direction. 

0 Comments


Recommended Comments

There are no comments to display.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...