All Activity
This stream auto-updates
- Yesterday
-
TJSherp joined the community
- Last week
-
Gabriel joined the community
-
Dorelia joined the community
-
Physicsbeginner joined the community
-
ehofstede joined the community
-
Tsao joined the community
-
rivercampusa joined the community
-
The one about the ice skater? Can you be more specific?
- Earlier
-
josestanleycuellarcarranza joined the community
-
HappyFunTimes joined the community
-
I don't understand the context of the 5th question of the Dynamics- Friction worksheet
-
BOOKS: The AP Physics C Companion - Mechanics
FizziksGuy replied to FizziksGuy's topic in Announcements
Absolutely... want you to be 100% satisfied with your purchase. Refund complete. -
BOOKS: The AP Physics C Companion - Mechanics
Jack Wang replied to FizziksGuy's topic in Announcements
This PDF version can't highlight, can't add notes, I really regret bought it and would like to return it. I'd rather buy the Kindle version. Can I return it? -
Maker started following Physics of Kite Flying
-
Tails are not required for kites to fly. Tails are one method of stability. It is not necessary to run to launch a kite. There is a book on amazon.com that answers these questions clearly. It's called, "Kite Physics." It gives a visual explanation of the physics of kites in flight. With 125 pictures, illustrations, and 65 experiments. It answers the questions: Are tails required on a kite? How can I improve the flight of my kite? What are the forces that act on my kite? What changes can I try? Do kites glide? What are some applications of kites that I can explore? How do kites fly?
-
Revised.
-
PIXELHYDRA changed their profile photo
-
Torque - Mass on Plank with String
Gaurav Kakran commented on Flipping Physics's a video in Rotational Motion
wonderful- 1 comment
-
- rotational equilibrium
- torque
- (and 3 more)
-
Vertical jump training is essential for athletes as it helps them to perform better in the field. However, some people also try to follow these techniques to improve overall health and fitness.
-
Bsivley1 changed their profile photo
-
sunbedbooster changed their profile photo
-
nucgirl changed their profile photo
-
BOOKS: The Ultimate Regents Physics Question and Answer Book - 2016 ed.
Thieny replied to FizziksGuy's topic in Announcements
I cannot print out papers from the pdf :( It said it needs password for the document -
Nutraorganix changed their profile photo
-
!!Final exam!! Electric field Gauss'
FizziksGuy replied to ertugrultiyek's question in Homework Help
Hi ertugrultiyek. Sounds like a solid question. What have you tried so far? -
ertugrultiyek started following !!Final exam!! Electric field Gauss'
-
The electric field just above the surface of the conductor charged plate in a machine has a magnitude of 3x10^5 N/C a) Derive an equation to find electric field on the surface of a big conductor plate. b) What is the surface charge density (in C/m^2) on the above mentioned plate, assuming that is a conductor?
-
Ghagan changed their profile photo
-
Ambika changed their profile photo
-
Game of Thrones and Physics (No Spoilers)
Lucas commented on krdavis18's blog entry in The Physics Behind Life
Hey, (SPOILER ALERT) what do you think of projectile motion last sunday episode when the big projectile hit Rhaegal? -
Lomorgan changed their profile photo
-
Hi Myua, It's in the download section -- the previous "buy" button turns to a "download" button after you complete the purchase. To save you the trouble, however, I also e-mailed you the file.
-
Myua Truong started following Print Answer Keys?
-
Where can I find the book to download? I already purchased it.
-
holbrook001 changed their profile photo
-
A hollow sphere, solid sphere, and thin hoop are simultaneously released from rest at the top of an #incline. Which will reach the bottom first? Assume all objects are of uniform density. #RollingWithoutSlipping Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:12 The problem 0:46 #ConservationOfEnergy 2:22 General solution 3:55 The order of the objects 5:20 The demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Rolling Acceleration Down an Incline Please support me on Patreon! Thank you to Christopher Becke and Jonathan Everett for being my Quality Control Team for this video.
-
- rolling without slipping
- incline acceleration
- (and 3 more)
-
NSAPFIZZIX changed their profile photo
-
Example: Determine the #Acceleration of a uniform, solid cylinder #RollingWithoutSlipping down an #Incline with incline angle θ. The rotational inertia of a uniform, solid cylinder about its long cylindrical axis is ½MR^2. Assume the cylinder starts from rest. Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:07 The problem 0:43 #ConservationOfEnergy 2:32 Rolling without Slipping 3:32 Displacement and height 5:12 Understanding our solution 6:16 Demonstrating our answer Next Video: Which Will Be First? (Rolling Down an Incline) Multilingual? Please help translate Flipping Physics videos! Previous Video: Rolling Without Slipping Introduction and Demonstrations Please support me on Patreon! Thank you to Christopher Becke and Jonathan Everett for being my Quality Control Team for this video.
-
- rotational kinetic energy
- conservation of energy
- (and 3 more)
-
Rolling without Slipping is demonstrated and the equation for velocity of the center of mass is derived. A cycloid is demonstrated. Kinetic energy, distance, and acceleration of rolling without slipping is discussed. Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:06 #RollingWithoutSlipping 0:28 #Cycloid 1:15 Translation and Rotational 3:13 Center of Mass Velocity 4:10 Resultant Velocity 4:37 Kinetic Energy 4:58 Distance and Acceleration Next Video: Rolling Acceleration Down an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Torque - Mass on Plank with String Please support me on Patreon! Thank you to Scott Carter, Christopher Becke, and Jonathan Everett for being my Quality Control Team for this video.
-
- cycloid
- kinetic energy of rolling without slipping
- (and 2 more)
-
Example: A 0.300 kg mass rests on a 0.395 m long, 0.764 kg, uniform wooden plank supported by a string as shown in the figure. If the mass is 0.274 m from the wall and the angle between the string and the plank is 32.1°, (a) What is the force of tension in the string? and (b) What is the normal force from the wall? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:07 The problem 1:17 The free body diagram 3:45 Net torque 5:41 Substituting in numbers 6:53 Net force 8:02 The demonstration Next Video: Rolling Without Slipping Introduction and Demonstrations Multilingual? Please help translate Flipping Physics videos! Previous Video: 2 Masses on a Pulley - Conservation of Energy Demonstration Please support me on Patreon! Thank you to Scott Carter, Christopher Becke, and Jonathan Everett for being my Quality Control Team for this video.
- 1 comment
-
- rotational equilibrium
- torque
- (and 3 more)
-
Example: Mass 1 and mass 2 hang from either side of a frictionless #pulley with #rotationalInertia, I, and radius, R. What is the angular acceleration of the pulley? Use #ConservationOfEnergy Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:07 The problem 1:01 Conservation of Energy 2:29 The mechanical energies 4:07 Solving the problem 5:57 Using arc length Next Video: Torque - Mass on Plank with String Multilingual? Please help translate Flipping Physics videos! Previous Video: 2 Masses on a Pulley - Torque Demonstration Please support me on Patreon! Thank you to Christopher Becke and Faiaz Rahman for being my Quality Control Team for this video.
-
- demonstration
- rotational kinetic energy
- (and 3 more)
-
Example: 0.100 kg and 0.200 kg masses hang from either side of a frictionless #Pulley with a rotational inertia of 0.0137 kg·m^2 and radius of 0.0385 m. (a) What is the #AngularAcceleration of the pulley? (b) What is the #TensionForce in each string? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:08 The problem 1:29 The free body diagrams 2:51 Net torque on the pulley 4:28 Net forces on both masses 6:49 Tangentail acceleration 7:31 Solving for acceleration 8:55 Measuring acceleration 10:16 Solving for Tension 12:29 2 incorrect solutions Next Video: 2 Masses on a Pulley - Conservation of Energy Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Using Integrals to Derive Rotational Inertia of a Long, Thin Rod with Demonstration Please support me on Patreon! Thank you to Christopher Becke and Faiaz Rahman for being my Quality Control Team for this video.
-
- example
- demonstration
- (and 3 more)
-
We use integrals to derive the #rotationalinertia of a uniform, long, thin rod. And we demonstrate our answer is correct using a Rotational Inertia Demonstrator. Want Lecture Notes? This is an AP Physics 😄 Mechanics Topic. Content Times: 0:15 Rotational Inertia 0:42 Linear Mass Density 1:51 About Center of Mass 3:02 About an End 4:27 Rotational Inertia Demonstrator (RID) 6:09 About Center of RID 7:03 Comparing our answers 7:43 Demonstrating our answer Next Video: 2 Masses on a Pulley - Torque Demonstration Multilingual? Please help translate Flipping Physics videos! Graphing the Rotational Inertia of an Irregular Shape Previous Video: How the Force of Tension on a Pulley Changes with Acceleration Please support me on Patreon! Thank you to Christopher Becke and Faiaz Rahman for being my Quality Control Team for this video.
-
We predict and measure the force of tension acting on a pulley while the system is at rest and accelerating. #PulleyTensionForce Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:20 The data 0:45 Review 1:15 Tension while at rest 2:45 Accelerating tension Next Video: Using Integrals to Derive Rotational Inertia of a Long, Thin Rod with Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Graphing the Rotational Inertia of an Irregular Shape Please support me on Patreon! Thank you to Christopher Becke and Faiaz Rahman for being my Quality Control Team for this video.
-
- example
- demonstration
-
(and 4 more)
Tagged with:
-
AP2 appendix A p 291 question 6 - charging electroscope
FizziksGuy replied to sdt99's topic in AP Physics 1/2
Connecting to ground provides an infinite supply of electrons (or can be an infinite sink of electrons). If you ground a metal rod, and hold a negative rod near an end, negative charges will be repelled from the rod into the ground. If you then disconnect the rod from the ground, no charges can enter or leave the rod, so you're left with a net positive charge on the rod.
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.