Jump to content

MyloXyloto

Members
  • Posts

    50
  • Joined

  • Last visited

Blog Entries posted by MyloXyloto

  1. MyloXyloto
    Another violin post, yay! I'm sure many of you already understood what I was talking about in my previous post, but this topic will likely be new to those of you who do not play a string instrument.  Did you know that if you buy a new violin and just take it out and try to play it right away, it will make no sound? Now that's just crazy, right?  It may sound like it; but if this were to happen, it's because you missed one very important step.  You forgot to put rosin on your bow.  
    A bow is made of horse hairs that are connected on each end to a stick that is typically made of wood or a synthetic material.  On their own, the hairs on a bow are very smooth; so if you were to rub them across the strings of a violin without putting on rosin, the bow would simply slide across the string without causing the strings to vibrate, which means no sound.  
    When rosin is applied, it gives the bow some stickiness.  This will increase the friction between the hairs on the bow and the string.  Because of this friction, the bow will try to stick a little to the strings.  It will grab the strings, causing them to vibrate as you drag your bow across.  This is part of what makes a violin have such a clear sound.  You have to reapply rosin every now and then.  You start to notice that your violin isn't making much sound, especially when playing higher notes, when it is in need of more rosin.
  2. MyloXyloto
    On a violin, there are two types of tuners.  There are the large black tuning pegs that anyone can easily see, and there are also fine tuners.  These are very tiny and are located on the ends of the string that are closer to the chin of the player.  The job of both sets of tuners is to adjust the tension in the string in order to produce a specific note.  On a violin, these notes are G, D, A, and E.  When the string is tighter, it produces a higher pitched sound.  when it's looser, the sound is lower.  Most often when tuning, strings need to be tightened a little because colder temperatures cause the wood in a violin to contract, leading the strings to loosen slightly. 
    More often than not, the small, fine tuners are what is being used to tune the instrument.  This is because since they are so small, they only can tighten or loosen a string a little bit, making it easier to tune to an exact pitch.  The large tuners are only used when the strings are so out of tune that the fine tuners won't do anything.  These are much harder to use because it often gets worse before it gets better.  These tuners are only held in place by the string wrapped around it and the wood it is inside of.  They will stay in place if you don't move them, but there is a lot of tension in the string.  If you try to tighten a string with one of these tuners, sometimes it will end up falling even more flat because there is not enough friction to oppose the motion of the tuner rotating as the string tries to loosen.  This is why I have a tendency to ask Ms. Murrell to help me tune if it's that bad.  
  3. MyloXyloto
    Here's a riddle for you guys: what's at the end of a rainbow? I'll get back to that at the end.
    So, rainbows.  As we all probably know, rainbows are not objects that can be approached.  They are an optical illusion caused by water droplets viewed a certain angle from a source of light, most likely the sun.  There may appear to be a person under a rainbow from where you are observing it, but that person just sees the rainbow from a different distance.  A rainbow is caused by light being refracted in a droplet of water like rain or mist. It is reflected inside in the back of the droplet, then refracted again.  In a primary rainbow, the color red is on the outside, and violet is on the inside, but in a double rainbow, the colors are reversed in the second rainbow.  There really aren't any distinct bands in a rainbow, they are a continuous spectrum of color.  Any bands we see are a result of human color vision. 
    Anyway, back to my first question.  What's at the end of a rainbow?  And the answer is... a W.  

×
×
  • Create New...