Search the Community
Showing results for tags '9.81'.

Derive the acceleration due to gravity on any planet. Find the acceleration due to gravity on Mt. Everest. And determine how much higher you could jump on the top of Mt. Everest! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Deriving the acceleration due to gravity on any planet 1:54 Finding the acceleration due to gravity on Mt. Everest 3:16 How much higher could you jump on the top of Mt. Everest? Next Video: Altitude of Geosynchronous Orbit (aka Geostationary Orbit) Multilingual? Please help translate Flipping Physics videos! Previous Vid

Name: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Category: Circular Motion & Gravity Date Added: 20171211 Submitter: Flipping Physics Derive the acceleration due to gravity on any planet. Find the acceleration due to gravity on Mt. Everest. And determine how much higher you could jump on the top of Mt. Everest! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Deriving the acceleration due to gravity on any planet 1:54 Finding the acceleration due to gravity on Mt. Everest 3:16 How much higher could you jump on

An advanced freefall acceleration problem involving 2 parts and 2 objects. Problem: You are wearing your rocket pack (total mass = 75 kg) that accelerates you upward at a constant 10.5 m/s^2. While preparing to take pictures of the beautiful view, you drop your camera 5.0 seconds after liftoff. 5.0 seconds after you drop the camera, (a) what is the camera's velocity and (b) how far are you from the camera? Content Times: 0:17 Reading the problem 1:26 Understanding the problem using a picture 2:10 Listing every known variable 3:22 Which part do we start solving first? 3:47 What do we s

Name: Don't Drop Your Camera 5.0 Seconds After Liftoff Category: Kinematics Date Added: 22 May 2014  04:31 PM Submitter: Flipping Physics Short Description: None Provided An advanced freefall acceleration problem involving 2 parts and 2 objects. Problem: You are wearing your rocket pack (total mass = 75 kg) that accelerates you upward at a constant 10.5 m/s^2. While preparing to take pictures of the beautiful view, you drop your camera 5.0 seconds after liftoff. 5.0 seconds after you drop the camera, (a) what is the camera's velocity and ( how far are you from the camera? Content T

Video Proof of the Mass Independence of the Acceleration due to Gravity and a little dancing. Content Times: 0:14 Reviewing the mass independence of freefall acceleration. 0:56 1 book 1:36 What's a boom box? 2:07 All 4 videos together 2:31 We can dance if we want to 3:25 Thank you very much for learning with me today [url="http://www.flippingphysics.com/droppingdictionaries.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/dontdropyourcamera.html"]Don't Drop Your Camera 5.0 Seconds After Liftoff[/url] Previous Video: [url="http://www.flip

Name: Dropping Dictionaries Doesn't Defy Gravity, Duh! Category: Kinematics Date Added: 22 May 2014  04:29 PM Submitter: Flipping Physics Short Description: None Provided Video Proof of the Mass Independence of the Acceleration due to Gravity and a little dancing. Content Times: 0:14 Reviewing the mass independence of freefall acceleration. 0:56 1 book 1:36 What's a boom box? 2:07 All 4 videos together 2:31 We can dance if we want to 3:25 Thank you very much for learning with me today View Video

A FreeFall Problem That You Must Split Into Two Parts
Flipping Physics posted a video in Kinematics
This is a complicated freefall problem where you have to identify that the velocity at the top of the path is zero in the ydireciton. Furthermore, you have to look at it from the perspective of the whole event and splitting the problem into two different parts. A classic freefall acceleration example problem. Content Times: 0:45 Reading the problem 1:12 Translating the problem to physics 3:04 Starting with the whole event 4:36 Splitting the problem into two parts 6:06 Solving part 1: Going up 8:17 Finishing the problem 9:05 An alternate solution 9:38 The review [url="http://ww
 freefall
 complicated

(and 7 more)
Tagged with:

Name: A FreeFall Problem That You Must Split Into Two Parts Category: Kinematics Date Added: 22 May 2014  04:27 PM Submitter: Flipping Physics Short Description: None Provided This is a complicated freefall problem where you have to identify that the velocity at the top of the path is zero in the ydireciton. Furthermore, you have to look at it from the perspective of the whole event and splitting the problem into two different parts. A classic freefall acceleration example problem. Content Times: 0:45 Reading the problem 1:12 Translating the problem to physics 3:04 Starting w

 freefall
 complicated

(and 7 more)
Tagged with:

In the previous lesson we dropped a ball from 2.0 meters above the ground and now we throw one up to a height of 2.0 meters. We do this in order to understand the similarities between the two events. Oh, and of course we draw some graphs. This is an Introductory FreeFall Acceleration Problem Content Times: 0:18 Reviewing the previous lesson 0:34 Reading the new problem 1:26 Acceleration vs. time 1:59 Velocity vs. time 2:49 Position vs. time 4:16 The Velocity at the top is ZERO! 5:50 Comparing throwing the ball to dropping the ball 6:56 Finding the total change in time 7:44 Finding

Name: Throwing a Ball up to 2.0 Meters & Proving the Velocity at the Top is Zero Category: Kinematics Date Added: 22 May 2014  04:23 PM Submitter: Flipping Physics Short Description: None Provided In the previous lesson we dropped a ball from 2.0 meters above the ground and now we throw one up to a height of 2.0 meters. We do this in order to understand the similarities between the two events. Oh, and of course we draw some graphs. This is an Introductory FreeFall Acceleration Problem Content Times: 0:18 Reviewing the previous lesson 0:34 Reading the new problem 1:26 Acceler

In this lesson we extend our knowledge of Uniformly Accelerated Motion to include freely falling objects. We talk about what FreeFall means, how to work with it and how to identify and object in FreeFall. Today I get to introduce so many of my favorites: the medicine ball, the vacuum that you can breathe and, of course, little g. Content Times: 0:22 An Example of An Object in FreeFall 0:54 Textbook definition of a freely falling object 1:11 We have not defined a "Force" so this is how we define FreeFall 2:07 No Air Resistance (The Vacuum that You Can Breathe!) 3:10 What does it mea
 2 comments

 FreeFall
 Acceleration

(and 8 more)
Tagged with:

Name: Introduction to FreeFall and the Acceleration due to Gravity Category: Kinematics Date Added: 21 May 2014  03:52 PM Submitter: Flipping Physics Short Description: None Provided In this lesson we extend our knowledge of Uniformly Accelerated Motion to include freely falling objects. We talk about what FreeFall means, how to work with it and how to identify and object in FreeFall. Today I get to introduce so many of my favorites: the medicine ball, the vacuum that you can breathe and, of course, little g. Content Times: 0:22 An Example of An Object in FreeFall 0:54 Textboo

 FreeFall
 Acceleration

(and 8 more)
Tagged with:
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.