Search the Community
Showing results for tags 'Motion'.

Name: AP Physics C: Simple Harmonic Motion Review (Mechanics) Category: Oscillations & Gravity Date Added: 20170430 Submitter: Flipping Physics Calculus based review of Simple Harmonic Motion (SHM). SHM is defined. A horizontal massspring system is analyzed and proven to be in SHM and it’s period is derived. The difference between frequency and angular frequency is shown. The equations and graphs of position, velocity, and acceleration as a function of time are analyzed. the phase constant Phi is explained. And Conservation of Mechanical Energy in SHM is discussed. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:12 Defining simple harmonic motion (SHM) 0:53 Analyzing the horizontal massspring system 2:26 Proving a horizontal massspring system is in SHM 3:38 Solving for the period of a massspring system in SHM 4:39 Are frequency and angular frequency the same thing? 5:16 Position as a function of time in SHM 5:44 Explaining the phase constant Phi 6:19 Deriving velocity as a function of time in SHM 7:33 Deriving acceleration as a function of time in SHM 9:05 Understanding the graphs of position, velocity, and acceleration as a function of time in SHM 12:16 Conservation of Mechanical Energy in SHM Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Equations to Memorize (Mechanics) Previous Video: AP Physics C: Universal Gravitation Review (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video. AP Physics C: Simple Harmonic Motion Review (Mechanics)

 phi
 function of time
 (and 19 more)

Name: A Common Misconception about Newton's Third Law Force Pairs (or ActionReaction Pairs) Category: Dynamics Date Added: 09 February 2015  02:24 PM Submitter: Flipping Physics Short Description: None Provided Proof that the Force Normal and the Force of Gravity are not a Newtonâ€™s Third Law Force Pair. Content Times: 0:26 Drawing the Free Body Diagram 1:02 Not a Newtonâ€™s Third Law Force Pair 1:37 The Force Normal Force Pair 1:55 The Force of Gravity Force Pair Multilingual? View Video

Name: Introduction to Newtonâ€™s Third Law of Motion Category: Dynamics Date Added: 19 January 2015  10:48 AM Submitter: Flipping Physics Short Description: None Provided Learn about Newtonâ€™s Third Law of Motion. Several examples of Newtonâ€™s Third Law Force Pairs are demonstrated and discussed. We even travel to Dandong, China. Content Times: 0:10 Newtonâ€™s Third Law 0:47 Ball and Head Force Pair 1:49 At the Ann Arbor HandsOn Museum 2:35 Why I donâ€™t like the Action/Reaction definition 3:30 Hammer and Nail Force Pair 4:20 Mr.p and Wall Force Pair 4:36 Kevin Zhang and The Great Wall Force Pair 5:23 The Great Wall Location Shots 5:36 Filming the intro Multilingual? View Video

 demonstration
 pair
 (and 8 more)

Name: Experimentally Graphing Uniformly Accelerated Motion Category: Kinematics Date Added: 16 January 2015  09:38 AM Submitter: Flipping Physics Short Description: None Provided We experimentally determine the position, velocity and acceleration as a function of time for a street hockey puck that is sliding and slowing down. Is it uniformly accelerated motion? Content Times: 0:16 Experimental graph of position as a function of time 0:43 Deciding what the graph of velocity as a function of time ideally should be 1:35 Experimental graph of velocity as a function of time 2:11 Deciding what the graph of acceleration as a function of time ideally should be 2:57 Experimental graph of acceleration as a function of time Multilingual? View Video

Name: Understanding Uniformly Accelerated Motion Category: Kinematics Date Added: 09 December 2014  02:05 PM Submitter: Flipping Physics Short Description: None Provided Students sometimes have a difficult time understanding what acceleration in meters per second squared really means. Therefore, I present acceleration as meters per second every second instead. This helps students gain a better conceptual understanding of acceleration. Content Times: 0:12 Acceleration is meters per second every second 1:22 The first demonstration 1:56 Finding the velocity at each second 3:18 Finding the position at each second 4:31 The second demonstration Multilingual? View Video

 acceleration
 velcoity

(and 6 more)
Tagged with:

Name: Introduction to Newtonâ€™s Second Law of Motion with Example Problem Category: Dynamics Date Added: 21 November 2014  02:38 PM Submitter: Flipping Physics Short Description: None Provided The application of Newtonâ€™s Second Law is when you really understand what the net force equals mass times acceleration where both force and acceleration are vectors really means. Therefore, we introduce Newtonâ€™s Second Law and then do an example problem. Content Times: 0:11 Defining Newtonâ€™s Second Law 1:00 The example problem 1:51 Drawing the Free Body Diagram 2:48 The Force of Gravity 3:42 The net force in the ydirection 5:28 The acceleration of the book in the ydirection 6:38 The net force in the xdirection 7:59 Solving for the dimensions of acceleration 8:54 Constant net force means constant acceleration Multilingual? View Video

 acceleration
 mass

(and 8 more)
Tagged with:

Name: Skateboarding Frame of Reference Demonstration Category: Kinematics Date Added: 15 October 2014  02:52 PM Submitter: Flipping Physics Short Description: None Provided All motion is relative to a frame of reference. A simple demonstration showing this to be true. Content Times: 0:21 The demonstration 1:22 A second, similar demonstration Multilingual? View Video

Name: Relative Motion Problem: Solving for the angle of the moving object Category: Kinematics Date Added: 07 October 2014  03:02 PM Submitter: Flipping Physics Short Description: None Provided It is not obvious in all relative motion problems how to draw the vector diagrams. Sometimes the velocity of the object with respect to the Earth is not the hypotenuse of the velocity vector addition triangle. Here we address how to handle a problem like that. Content Times: 0:15 Reading the problem 0:40 Translating the problem 1:52 Visualizing the problem 2:17 Drawing the vector diagram 3:33 Rearranging the vector equation 4:40 Redrawing the vector diagram 5:30 The Earth subscript drops out of the equation 5:51 Solving part (a): solving for theta 6:40 Solving part (b ): solving for the speed of the car relative to the Earth 7:48 Understanding the answer to part (b ) Want View Video

Name: An Introductory Relative Motion Problem with Vector Components Category: Kinematics Date Added: 02 October 2014  09:52 AM Submitter: Flipping Physics Short Description: None Provided This relative motion problem addresses how to deal with vectors that do not form right triangles. Content Times: 0:15 Reading the problem 0:32 Translating the problem 1:29 Visualizing the problem 2:30 Drawing the vector diagram 2:57 Havenâ€™t we already done this problem? 3:31 How NOT to solve the problem 4:06 How to solve the problem using component vectors 4:40 Finding component vectors 5:58 Redrawing the vector diagram 6:20 Finding the magnitude of the resultant vector 8:02 Finding the direction of the resultant vector 9:15 Showing the resultant vector angle Want View Video

Name: An Introductory Relative Motion Problem Category: Kinematics Date Added: 29 September 2014  02:58 PM Submitter: Flipping Physics Short Description: None Provided Using a toy car and a piece of paper we can visualize and understand relative motion by doing an introductory problem. Content Times: 0:13 Reading the problem 0:42 Translating the problem 1:38 Visualizing the problem 2:24 The vector diagram and equation 3:14 Isnâ€™t this vector addition? 3:30 Solving for the velocity of the car with respect to the Earth 4:44 Solving for the direction of the car with respect to the Earth 6:32 Part ( How far did the car travel? 7:15 New similar triangle with displacements 8:15 Solving part ( 9:58 Solving part © How long did the car travel? 10:58 An alternate solution to part © 11:36 Yes, it did take about 15 seconds Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! Next Video: An Introductory Relative Motion Problem with Vector Components Previous video: Introduction to Relative Motion using a Quadcopter Drone 1Â¢/minute View Video

 with respect to
 Earth

(and 7 more)
Tagged with:

Name: Introduction to Relative Motion using a Quadcopter Drone (UAV) Category: Kinematics Date Added: 23 September 2014  03:21 PM Submitter: Flipping Physics Short Description: None Provided Two vehicles driven at different speeds parallel to one another is a great one dimensional way to introduce relative motion. When viewed from above using a quadcopter drone, it is even better! Thanks Aaron Fown of View Video

Name: The Classic Bullet Projectile Motion Experiment Category: Kinematics Date Added: 20 June 2014  01:32 PM Submitter: Flipping Physics Short Description: None Provided One bullet is fired horizontally and simultaneously a second bullet is dropped from the same height. Neglecting air resistance and assuming the ground is level, which bullet hits the ground first? Content Times: 0:15 Reading the problem 0:53 Listing the known variables 1:59 Determining the answer 2:37 Demonstrating the answer 3:00 Isn't one moving faster? 3:52 The Review Want View Video

 problem
 experiment

(and 8 more)
Tagged with:

Name: A Range Equation Problem with Two Parts Category: Kinematics Date Added: 19 June 2014  01:20 PM Submitter: Flipping Physics Short Description: None Provided Mr.p throws a ball toward a bucket that is 581 cm away from him horizontally. He throws the ball at an initial angle of 55° above the horizontal and the ball is 34 cm short of the bucket. If mr.p throws the ball with the same initial speed and the ball is always released at the same height as the top of the bucket, at what angle does he need to throw the ball so it will land in the bucket? Content Times: 0:14 Reading the problem 1:01 Why we can use the Range Equation 2:15 Listing what we know for the first attempt 3:06 Solving for the initial speed 4:26 Solving for the initial angle 5:45 Putting the ball in the bucket 6:15 There are actually two correct answers 6:44 Getting the ball into the basket Want View Video

Name: Deriving the Range Equation of Projectile Motion Category: Kinematics Date Added: 16 June 2014  02:16 PM Submitter: Flipping Physics Short Description: None Provided Learn how to derive the Range of Projectile. The Horizontal Range of a Projectile is defined as the horizontal displacement of a projectile when the displacement of the projectile in the ydirection is zero. Content Times: 0:12 Defining Range 0:32 Resolving the initial velocity in to it's components 1:49 Listing our known values 2:49 Solving for range in terms of change in time 3:30 Solving for the change in time in the ydireciton 5:18 Combining two equations 6:03 The Sine Double Angle Formula 6:53 The Review Want View Video
 1 reply

 horizontal
 displacement

(and 5 more)
Tagged with:

Name: Understanding the Range Equation of Projectile Motion Category: Kinematics Date Added: 10 June 2014  02:03 PM Submitter: Flipping Physics Short Description: None Provided The Horizontal Range of a Projectile is defined as the horizontal displacement of a projectile when the displacement of the projectile in the ydirection is zero. This video explains how to use the equation, why a launch angle of 45° gives the maximum range and why complimentary angles give the same range. Content Times: 0:16 Defining Range 0:50 How can the displacement in the ydirection be zero? 1:21 The variables in the equation 2:09 g is Positive! 3:05 How to get the maximum range 4:17 What dimensions to use in the equation 5:19 The shape of the sin(θ) graph 6:17 sin(2·30°) = sin(2·60°) 7:35 A graph of the Range of various Launch Angles 8:18 The Review Want View Video

Name: NerdAPult #2  Another Projectile Motion Problem Category: Kinematics Date Added: 03 June 2014  12:29 PM Submitter: Flipping Physics Short Description: None Provided This time in our projectile motion problem, we know the displacement in the ydireciton and we are solving for the displacement in the xdireciton. We could you use the quadratic formula and I even show you how, however, I also show you the way I recommend doing it which avoids the quadratic formula. Content Times: 0:14 Reading the problem 0:55 Comparing the previous projectile motion problem to the current one 1:16 Breaking the initial velocity in to its components 1:44 Listing the givens 2:27 Beginning to solve the problem in the ydirection 3:08 The Quadratic Formula! 5:49 How to solve it without using the quadratic formula. Solve for Velocity Final in the ydirection first 6:59 And then solve for the change in time 8:12 Solving for the displacement in the xdirection 9:01 Showing that it works 9:43 The Review Want View Video

Name: NerdAPult  An Introductory Projectile Motion Problem Category: Kinematics Date Added: 23 May 2014  02:05 PM Submitter: Flipping Physics Short Description: None Provided An introductory projectile motion problem where you have to break the initial velocity vector in to its components before you can work with it. The NerdAPult is the perfect tool for showing projectile motion. Content Times: 0:02 Introducing the NerdAPult 0:43 Demonstrating the marshmallow capabilities of the NerdAPult 1:18 Reading the problem 2:26 Starting to solve the problem 3:03 What do we do with the initial velocity? 3:45 Solving for the initial velocity in the ydirection 4:27 Solving for the initial velocity in the xdirection 5:13 Deciding which direction to start working with 5:38 Solving for the change in time in the xdirection 6:34 Solving for the displacement in the ydirection 7:54 Proving that our answer is correct 8:58 The Review View Video

 break
 components

(and 8 more)
Tagged with:

Name: A Brief Look at the Force of Drag using Numerical Modeling (or The Euler Method) Category: Dynamics Date Added: 22 May 2014  05:01 PM Submitter: Flipping Physics Short Description: None Provided This is how you include air resistance in projectile motion. It requires the Drag Force and Numerical Modeling (or the Euler Method). It is also very helpful to use a spreadsheet to do the calculations. I prove a statement from a previous projectile motion problem video, "Air resistance decreases the x displacement of the ball by less than 1 cm." Content Times: 0:22 The statement this video proves 1:01 The basic concept of air resistance 1:54 The Free Body Diagram 2:20 The Drag Force Equation 3:13 Information about the Lacrosse Ball 4:03 The Drag Coefficient 4:55 The Density of Air 5:18 How the Drag Force affects the motion 5:58 The basic idea of Numerical Modeling (or the Euler Method) 6:50 Solving for the acceleration in the x direction 8:53 Solving for the final velocity in the x direction 9:54 Solving for the final position in the x direction 11:41 Entering the Lacrosse Ball information into Excel 13:34 Solving for the Drag Force in x direction in Excel 14:29 Solving for the acceleration in the x direction in Excel 14:58 Solving for the final velocity and final position in the x direction in Excel 15:46 Solving for the acceleration in the y direction 17:21 Solving for all the variables in the y direction in Excel 19:13 Click and Drag Copy. Harnessing the Power of Excel! 19:43 Understanding the numbers in Excel 20:35 Solving for the decrease in the x displacement caused by the Drag Force View Video

Name: (Part 2 of 2) An Introductory Projectile Motion Problem with an Initial Horizontal Velocity Category: Kinematics Date Added: 22 May 2014  04:57 PM Submitter: Flipping Physics Short Description: None Provided Now that we have dropped the ball into the bucket, we can determine the final velocity of the ball right before it strikes the bucket. Don't forget that velocity is a vector and has both magnitude and direction. Yep, component vector review! Content Times: 0:34 Finding the final velocity in the y direction. 1:52 We need to find the hypotenuse! 2:28 Finding the final velocity in the x direction. 2:57 Finding the magnitude of the final velocity. 4:06 Finding the direction of the final velocity. 5:08 The number answer. 5:52 Visualizing the answer. 6:28 Why is the ball always right below mr.p's hand? 7:07 Doesn't the ball travel farther than mr.p's hand? 7:33 The Review. View Video

 projectile
 motion

(and 7 more)
Tagged with:

Name: (Part 1 of 2) An Introductory Projectile Motion Problem with an Initial Horizontal Velocity Category: Kinematics Date Added: 22 May 2014  04:49 PM Submitter: Flipping Physics Short Description: None Provided Can you drop a ball from a moving vehicle and get it to land in a bucket? You can using Physics! In this video we solve an introductory projectile motion problem involving an initial horizontal velocity and predict how far in front of the bucket to drop the ball. Content Times: 0:17 Reading the problem. 0:41 Visualizing the problem. 1:18 Translating the problem. 2:31 Converting from miles per hour to meters per second. 3:10 Two common mistakes about projectile motion givens. 4:29 Beginning to solve the problem. 5:13 Solving for the change in time in the ydirection. 6:22 Solving for the displacement in the xdirection. 7:29 Video proof that it works. 8:14 Air resistance? 9:09 In our next lesson... View Video

 introductory
 projectile

(and 8 more)
Tagged with:

Name: Introduction to Projectile Motion Category: Kinematics Date Added: 22 May 2014  04:44 PM Submitter: Flipping Physics Short Description: None Provided My strategy for solving any projectile motion problem. You need to split the variables in to the x and y directions and solve for time. Sounds simple and it really is, usually. Content Times: 0:11 Review of Linear Motion Examples 0:57 Introducing Projectile Motion! 1:48 Basic strategy for solving any projectile motion problem 2:06 The ydirection (UAM) 3:22 The xdirection (constant velocity) 4:36 How many knowns do you need in each direction? 5:41 What do we usually solve for? 6:12 The Review View Video

 Introduction
 Projectile

(and 5 more)
Tagged with:

Name: Introduction to FreeFall and the Acceleration due to Gravity Category: Kinematics Date Added: 21 May 2014  03:52 PM Submitter: Flipping Physics Short Description: None Provided In this lesson we extend our knowledge of Uniformly Accelerated Motion to include freely falling objects. We talk about what FreeFall means, how to work with it and how to identify and object in FreeFall. Today I get to introduce so many of my favorites: the medicine ball, the vacuum that you can breathe and, of course, little g. Content Times: 0:22 An Example of An Object in FreeFall 0:54 Textbook definition of a freely falling object 1:11 We have not defined a "Force" so this is how we define FreeFall 2:07 No Air Resistance (The Vacuum that You Can Breathe!) 3:10 What does it mean to be in FreeFall? (The Acceleration due to Gravity) 4:41 The Acceleration due to Gravity  Not on Earth 5:24 g is not constant on Earth. Very close, but not quite 5:56 Common Misconception: Objects moving upward can be freely falling 6:35 FreeFall is Uniformly Accelerated Motion 7:27 What does the negative mean in 9.81 m/s^2? 7:57 Is "g" positive or negative? 9:01 How can "g" be not constant and we can use UAM? 10:03 Does mass effect the acceleration due to gravity? 10:47 The Review View Video

 FreeFall
 Acceleration

(and 8 more)
Tagged with:

Name: Reviewing One Dimensional Motion with the Table of Friends Category: Kinematics Date Added: 21 May 2014  03:51 PM Submitter: Flipping Physics Short Description: None Provided We get to start our Table of Friends today. Dimensions are your friends and there are so many dimensions to keep track of, so we create our Table of Friends to help us keep track of them. Today's friends have to do with One Dimensional Motion. Content Times: 0:35 Naming all 5 friends 1:13 Relative Error 1:40 Displacement 2:01 Speed 2:55 Velocity 3:14 How can we forget Delta? 4:24 Acceleration 4:46 The Review View Video

 one
 dimensional

(and 2 more)
Tagged with:

Video Discussion: Graphical UAM Example Problem
Flipping Physics posted a topic in Video Discussions
Name: Graphical UAM Example Problem Category: Kinematics Date Added: 21 May 2014  03:48 PM Submitter: Flipping Physics Short Description: None Provided Again with the graphs? Yes. Absolutely Yes. Graphs are such an important part of any science, especially physics. The more you work with graphs, the more you will understand them. Here we combine graphs and uniformly accelerated motion. Enjoy. Content Times: 0:29 Reading the Problem 1:02 How do we know it is UAM from the graph? 1:26 Two different, equivalent equations for acceleration 2:41 Finding acceleration 3:23 Graphing acceleration vs. time 3:44 The general shape of the position vs. time graph 4:53 Determining specific points on the position vs. time graph 6:06 Graphing position vs. time 6:58 The Review View Video
 Uniformly
 Accelerated
 (and 7 more)

Name: Toy Car UAM Problem with Two Difference Accelerations Category: Kinematics Date Added: 21 May 2014  03:45 PM Submitter: Flipping Physics Short Description: None Provided In this lesson we continue to use what we have learned about solving Uniformly Accelerated Motion (UAM) problems. This problem is more complicated because it involves two, interconnected parts. Content Times: 0:26 Reading the problem 0:46 Seeing the problem 1:11 Translating from words to physics 1:58 Splitting the problem into two parts 3:13 Fixing the knowns (common mistakes) 4:35 How do we know we can use the UAM equations? 5:19 Drawing a picture to better understand the problem 6:00 Finding the missing known 7:29 What are we finding again? 8:45 The end of part 1 is the start of part 2! 9:29 Beginning to solve the problem 11:19 Solving part ( 13:53 What is wrong with solving the whole thing at once? 16:03 Rapping it up! Want Lecture Notes? Next Video: The Humility Soapbox  Uniformly vs. Uniformally Previous Video: Introductory Uniformly Accelerated Motion Problem  A Braking Bicycle View Video

 Uniformly
 Accelerated
 (and 4 more)
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.