Search the Community
Showing results for tags 'Relative'.
-
Name: Skateboarding Frame of Reference Demonstration Category: Kinematics Date Added: 15 October 2014 - 02:52 PM Submitter: Flipping Physics Short Description: None Provided All motion is relative to a frame of reference. A simple demonstration showing this to be true. Content Times: 0:21 The demonstration 1:22 A second, similar demonstration Multilingual? View Video
-
Name: Relative Motion Problem: Solving for the angle of the moving object Category: Kinematics Date Added: 07 October 2014 - 03:02 PM Submitter: Flipping Physics Short Description: None Provided It is not obvious in all relative motion problems how to draw the vector diagrams. Sometimes the velocity of the object with respect to the Earth is not the hypotenuse of the velocity vector addition triangle. Here we address how to handle a problem like that. Content Times: 0:15 Reading the problem 0:40 Translating the problem 1:52 Visualizing the problem 2:17 Drawing the vector diagram 3:33 Rearranging the vector equation 4:40 Redrawing the vector diagram 5:30 The Earth subscript drops out of the equation 5:51 Solving part (a): solving for theta 6:40 Solving part (b ): solving for the speed of the car relative to the Earth 7:48 Understanding the answer to part (b ) Want View Video
-
Name: An Introductory Relative Motion Problem with Vector Components Category: Kinematics Date Added: 02 October 2014 - 09:52 AM Submitter: Flipping Physics Short Description: None Provided This relative motion problem addresses how to deal with vectors that do not form right triangles. Content Times: 0:15 Reading the problem 0:32 Translating the problem 1:29 Visualizing the problem 2:30 Drawing the vector diagram 2:57 Haven’t we already done this problem? 3:31 How NOT to solve the problem 4:06 How to solve the problem using component vectors 4:40 Finding component vectors 5:58 Redrawing the vector diagram 6:20 Finding the magnitude of the resultant vector 8:02 Finding the direction of the resultant vector 9:15 Showing the resultant vector angle Want View Video
-
Name: An Introductory Relative Motion Problem Category: Kinematics Date Added: 29 September 2014 - 02:58 PM Submitter: Flipping Physics Short Description: None Provided Using a toy car and a piece of paper we can visualize and understand relative motion by doing an introductory problem. Content Times: 0:13 Reading the problem 0:42 Translating the problem 1:38 Visualizing the problem 2:24 The vector diagram and equation 3:14 Isn’t this vector addition? 3:30 Solving for the velocity of the car with respect to the Earth 4:44 Solving for the direction of the car with respect to the Earth 6:32 Part ( How far did the car travel? 7:15 New similar triangle with displacements 8:15 Solving part ( 9:58 Solving part © How long did the car travel? 10:58 An alternate solution to part © 11:36 Yes, it did take about 15 seconds Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! Next Video: An Introductory Relative Motion Problem with Vector Components Previous video: Introduction to Relative Motion using a Quadcopter Drone 1¢/minute View Video
-
- with respect to
- Earth
-
(and 7 more)
Tagged with:
-
Name: Introduction to Relative Motion using a Quadcopter Drone (UAV) Category: Kinematics Date Added: 23 September 2014 - 03:21 PM Submitter: Flipping Physics Short Description: None Provided Two vehicles driven at different speeds parallel to one another is a great one dimensional way to introduce relative motion. When viewed from above using a quadcopter drone, it is even better! Thanks Aaron Fown of View Video
-
Name: Introduction to Accuracy and Precision (includes Relative Error) Category: Introductory Concepts Date Added: 20 May 2014 - 01:44 PM Submitter: Flipping Physics Short Description: None Provided This video includes the definitions of Accuracy and Precision. It also shows several examples using a "Safe Dart" bow and arrow. It ends with the equation for Relative Error. Times of Content: 0:44 Definition of Accuracy 1:39 Definition of Precision 2:17 The Question for all the Examples 3:48 1st Example 4:31 2nd Example 5:14 3rd Example 6:33 4th Example 7:32 Relative Error Equation 9:37 "Safe Dart" Outtakes (it took forever to get the "Safe Dart" to work) View Video
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.