Search the Community
Showing results for tags 'Uniformly'.

We experimentally determine the position, velocity and acceleration as a function of time for a street hockey puck that is sliding and slowing down. Is it uniformly accelerated motion? Content Times: 0:16 Experimental graph of position as a function of time 0:43 Deciding what the graph of velocity as a function of time ideally should be 1:35 Experimental graph of velocity as a function of time 2:11 Deciding what the graph of acceleration as a function of time ideally should be 2:57 Experimental graph of acceleration as a function of time Multilingual? [url="http://www.flippingphysic

Name: Experimentally Graphing Uniformly Accelerated Motion Category: Kinematics Date Added: 16 January 2015  09:38 AM Submitter: Flipping Physics Short Description: None Provided We experimentally determine the position, velocity and acceleration as a function of time for a street hockey puck that is sliding and slowing down. Is it uniformly accelerated motion? Content Times: 0:16 Experimental graph of position as a function of time 0:43 Deciding what the graph of velocity as a function of time ideally should be 1:35 Experimental graph of velocity as a function of time 2:11 Deci

In this lesson we extend our knowledge of Uniformly Accelerated Motion to include freely falling objects. We talk about what FreeFall means, how to work with it and how to identify and object in FreeFall. Today I get to introduce so many of my favorites: the medicine ball, the vacuum that you can breathe and, of course, little g. Content Times: 0:22 An Example of An Object in FreeFall 0:54 Textbook definition of a freely falling object 1:11 We have not defined a "Force" so this is how we define FreeFall 2:07 No Air Resistance (The Vacuum that You Can Breathe!) 3:10 What does it mea
 2 comments

 FreeFall
 Acceleration

(and 8 more)
Tagged with:

Name: Introduction to FreeFall and the Acceleration due to Gravity Category: Kinematics Date Added: 21 May 2014  03:52 PM Submitter: Flipping Physics Short Description: None Provided In this lesson we extend our knowledge of Uniformly Accelerated Motion to include freely falling objects. We talk about what FreeFall means, how to work with it and how to identify and object in FreeFall. Today I get to introduce so many of my favorites: the medicine ball, the vacuum that you can breathe and, of course, little g. Content Times: 0:22 An Example of An Object in FreeFall 0:54 Textboo

 FreeFall
 Acceleration

(and 8 more)
Tagged with:

Again with the graphs? Yes. Absolutely Yes. Graphs are such an important part of any science, especially physics. The more you work with graphs, the more you will understand them. Here we combine graphs and uniformly accelerated motion. Enjoy. Content Times: 0:29 Reading the Problem 1:02 How do we know it is UAM from the graph? 1:26 Two different, equivalent equations for acceleration 2:41 Finding acceleration 3:23 Graphing acceleration vs. time 3:44 The general shape of the position vs. time graph 4:53 Determining specific points on the position vs. time graph 6:06 Graphing positio
 3 comments

 Uniformly
 Accelerated
 (and 7 more)

Video Discussion: Graphical UAM Example Problem
Flipping Physics posted a topic in Video Discussions
Name: Graphical UAM Example Problem Category: Kinematics Date Added: 21 May 2014  03:48 PM Submitter: Flipping Physics Short Description: None Provided Again with the graphs? Yes. Absolutely Yes. Graphs are such an important part of any science, especially physics. The more you work with graphs, the more you will understand them. Here we combine graphs and uniformly accelerated motion. Enjoy. Content Times: 0:29 Reading the Problem 1:02 How do we know it is UAM from the graph? 1:26 Two different, equivalent equations for acceleration 2:41 Finding acceleration 3:23 Graphing acce
 Uniformly
 Accelerated
 (and 7 more)

In this lesson we continue to use what we have learned about solving Uniformly Accelerated Motion (UAM) problems. This problem is more complicated because it involves two, interconnected parts. Content Times: 0:26 Reading the problem 0:46 Seeing the problem 1:11 Translating from words to physics 1:58 Splitting the problem into two parts 3:13 Fixing the knowns (common mistakes) 4:35 How do we know we can use the UAM equations? 5:19 Drawing a picture to better understand the problem 6:00 Finding the missing known 7:29 What are we finding again? 8:45 The end of part 1 is the start of

 Uniformly
 Accelerated
 (and 4 more)

Name: Toy Car UAM Problem with Two Difference Accelerations Category: Kinematics Date Added: 21 May 2014  03:45 PM Submitter: Flipping Physics Short Description: None Provided In this lesson we continue to use what we have learned about solving Uniformly Accelerated Motion (UAM) problems. This problem is more complicated because it involves two, interconnected parts. Content Times: 0:26 Reading the problem 0:46 Seeing the problem 1:11 Translating from words to physics 1:58 Splitting the problem into two parts 3:13 Fixing the knowns (common mistakes) 4:35 How do we know we can

 Uniformly
 Accelerated
 (and 4 more)

This video continues what we learned about UAM in our previous lesson. We work through a introductory problem involving a bicycle on which we have applied the brakes. Content Times: 0:28 Reading the problem 0:48 Seeing the problem 1:15 Translating the problem to physics 2:35 Why is it final speed and not velocity? 3:48 Solving for the acceleration 6:03 Converting initial velocity to meters per second 7:32 Solving for distance traveled. 8:05 A common mistake 10:02 Two more ways to solve for the distance traveled. 10:45 Why didn't the speedometer show the correct final speed? [ur

 Uniformly
 acclerated

(and 5 more)
Tagged with:

Name: Introductory Uniformly Accelerated Motion Problem  A Braking Bicycle Category: Kinematics Date Added: 21 May 2014  03:43 PM Submitter: Flipping Physics Short Description: None Provided This video continues what we learned about UAM in our previous lesson. We work through a introductory problem involving a bicycle on which we have applied the brakes. Content Times: 0:28 Reading the problem 0:48 Seeing the problem 1:15 Translating the problem to physics 2:35 Why is it final speed and not velocity? 3:48 Solving for the acceleration 6:03 Converting initial velocity to meter

 Uniformly
 acclerated

(and 5 more)
Tagged with:

This is an introductory lesson about Uniformly Accelerated Motion or UAM. I show examples of 5 different objects experiencing UAM, some are even in slow motion. We also learn my simple way of remembering how to use the UAM equations. Content Times: 0:20 Defining what it means to be in UAM 0:40 5 examples of objects experiencing UAM (some in slow motion) 1:50 Disclaimer for the peanut gallery 2:50 The four UAM equations 3:32 The five UAM variables 4:45 How to work with the UAM equations 5:31 One Happy Physics Student! [url="http://www.flippingphysics.com/introductiontouniformlya

 uniformly
 accelerated
 (and 4 more)

Name: Introduction to Uniformly Accelerated Motion with Examples of Objects in UAM Category: Kinematics Date Added: 21 May 2014  03:42 PM Submitter: Flipping Physics Short Description: None Provided This is an introductory lesson about Uniformly Accelerated Motion or UAM. I show examples of 5 different objects experiencing UAM, some are even in slow motion. We also learn my simple way of remembering how to use the UAM equations. Content Times: 0:20 Defining what it means to be in UAM 0:40 5 examples of objects experiencing UAM (some in slow motion) 1:50 Disclaimer for the peanut

 uniformly
 accelerated
 (and 4 more)
Footer title
This content can be configured within your theme settings in your ACP. You can add any HTML including images, paragraphs and lists.
Footer title
This content can be configured within your theme settings in your ACP. You can add any HTML including images, paragraphs and lists.
Footer title
This content can be configured within your theme settings in your ACP. You can add any HTML including images, paragraphs and lists.