Search the Community
Showing results for tags 'complicated'.
-
This visually confusing tip-to-tail vector addition problem can be solved just like our previous problems. Give your vectors names, draw a vector diagram, break vectors in to components, redraw the vector diagram, create a data table, add columns and solve using basic trig. Content Times: 0:14 Reading, visualizing, and translating the problem. 1:13 Drawing the vector diagram. 2:06 Breaking vector C in to its components. 3:22 Redrawing the vector diagram (twice). 4:16 Creating the data table. 4:53 Determining the components of the resultant vector, R. 5:33 Solving for vector R. 7:13 Visualizing the entire problem. 7:36 The Review. [url="http://www.flippingphysics.com/complicated-vector-addition.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/projectile-motion.html"]Introduction to Projectile Motion[/url] Previous Video: [url="http://www.flippingphysics.com/data-table.html"]Using a Data Table to Make Vector Addition Problems Easier[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
-
- confusing
- complicated
-
(and 8 more)
Tagged with:
-
Name: A Visually Complicated Vector Addition Problem using Component Vectors Category: Kinematics Date Added: 22 May 2014 - 04:43 PM Submitter: Flipping Physics Short Description: None Provided This visually confusing tip-to-tail vector addition problem can be solved just like our previous problems. Give your vectors names, draw a vector diagram, break vectors in to components, redraw the vector diagram, create a data table, add columns and solve using basic trig. Content Times: 0:14 Reading, visualizing, and translating the problem. 1:13 Drawing the vector diagram. 2:06 Breaking vector C in to its components. 3:22 Redrawing the vector diagram (twice). 4:16 Creating the data table. 4:53 Determining the components of the resultant vector, R. 5:33 Solving for vector R. 7:13 Visualizing the entire problem. 7:36 The Review. View Video
-
- confusing
- complicated
-
(and 8 more)
Tagged with:
-
A Free-Fall Problem That You Must Split Into Two Parts
Flipping Physics posted a video in Kinematics
This is a complicated free-fall problem where you have to identify that the velocity at the top of the path is zero in the y-direciton. Furthermore, you have to look at it from the perspective of the whole event and splitting the problem into two different parts. A classic free-fall acceleration example problem. Content Times: 0:45 Reading the problem 1:12 Translating the problem to physics 3:04 Starting with the whole event 4:36 Splitting the problem into two parts 6:06 Solving part 1: Going up 8:17 Finishing the problem 9:05 An alternate solution 9:38 The review [url="http://www.flippingphysics.com/free-fall-problem.html"]Want Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/dropping-dictionaries.html"]Dropping Dictionaries Doesn't Defy Gravity, Duh![/url] Previous Video: [url="http://www.flippingphysics.com/common-free-fall-pitfalls.html"]Common Free-Fall Pitfalls[/url]-
- free-fall
- complicated
-
(and 7 more)
Tagged with:
-
Name: A Free-Fall Problem That You Must Split Into Two Parts Category: Kinematics Date Added: 22 May 2014 - 04:27 PM Submitter: Flipping Physics Short Description: None Provided This is a complicated free-fall problem where you have to identify that the velocity at the top of the path is zero in the y-direciton. Furthermore, you have to look at it from the perspective of the whole event and splitting the problem into two different parts. A classic free-fall acceleration example problem. Content Times: 0:45 Reading the problem 1:12 Translating the problem to physics 3:04 Starting with the whole event 4:36 Splitting the problem into two parts 6:06 Solving part 1: Going up 8:17 Finishing the problem 9:05 An alternate solution 9:38 The review View Video
-
- free-fall
- complicated
-
(and 7 more)
Tagged with:
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.