Search the Community
Showing results for tags 'demonstration'.
-
Name: Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions Category: Oscillations Date Added: 2018-04-15 Submitter: Flipping Physics Identifying the spring force, acceleration, and velocity at the end positions and equilibrium position of simple harmonic motion. Amplitude is also defined and shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Identifying the 3 positions 0:43 Velocity 1:43 Spring Force 2:14 Amplitude 2:30 Acceleration 3:22 Velocity at position 2 4:12 Is simple harmonic motion also uniformly accelerated motion? Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Next Video: Horizontal vs. Vertical Mass-Spring System Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Please support me on Patreon! Thank you to Jonathan Everett, Sawdog, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions
-
- simple harmonic motion
- force
- (and 8 more)
-
Name: The Human Spine acts like a Compression Spring Category: Oscillations Date Added: 2018-04-02 Submitter: Flipping Physics A horizontal spring is attached to a cord, the cord goes over a pulley, and a 0.025 kg mass is attached to the cord. If the spring is stretched by 0.045 m, what is the spring constant of the spring? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:39 Solving the problem 2:26 Comparing to a vertical spring 3:30 Expansion vs. compression springs 3:56 The human spine acts like a compression spring Next Video: You Can't Run From Momentum! (a momentum introduction) Multilingual? Please help translate Flipping Physics videos! Previous Video: Determining the Spring Constant, k, with a Vertically Hanging Mass Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. The Human Spine acts like a Compression Spring
-
- hookes law
- demonstration
- (and 9 more)
-
Name: Dropping a Bucket of Water - Demonstration Category: Circular Motion & Gravity Date Added: 2018-01-14 Submitter: Flipping Physics Demonstrating the physics of dropping a bucket of water with two holes in it. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:17 The physics of dropping a bucket of water with two holes in it 0:57 The demonstration 1:18 Why water stops flowing out of the holes 2:43 Why it takes half a second for water to stop flowing out of the holes Next Video: Apparent Weightlessness Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Altitude of Geostationary Orbit (a special case of Geosynchronous Orbit) Please support me on Patreon! Thank you to Jonathan Everett, Christopher Becke, Frank Geshwind, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Dropping a Bucket of Water - Demonstration
-
- apparent weightlessness
- free fall
-
(and 3 more)
Tagged with:
-
Name: The Force of Gravitational Attraction between the Earth and the Moon Category: Circular Motion & Gravity Date Added: 2017-12-03 Submitter: Flipping Physics According to NASA, the mass of the Earth is 5.97 x 10^24 kg, the mass of the Moon is 7.3 x 10^22 kg, and the mean distance between the Earth and the Moon is 3.84 x 10^8 m. What is the force of gravitational attraction between the Earth and the Moon? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:56 Solving the problem 2:15 Determining how long until the Moon crashes into the Earth 4:00 Determining what is wrong with this calculation Next Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Multilingual? Please help translate Flipping Physics videos! Previous Video: How Much is a Mermaid Attracted to a Doughnut? Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. The Force of Gravitational Attraction between the Earth and the Moon
-
Name: How Much is a Mermaid Attracted to a Doughnut? Category: Circular Motion & Gravity Date Added: 2017-11-27 Submitter: Flipping Physics How Much is a Mermaid Attracted to a Doughnut? A practical, everyday example of Newton’s Universal Law of Gravitation. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 The Force of Gravity Equation 1:47 Solving the problem 2:24 How to do “times ten to the” on your calculator 2:45 Correcting our mistake 3:42 Visualizing these forces 4:14 Why do the objects not move? 5:36 What if the mermaid and donut were the only two objects in the universe? Next Video: The Force of Gravitational Attraction between the Earth and the Moon Multilingual? Please help translate Flipping Physics videos! Previous Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Please support me on Patreon! Thank you to Eric York, Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. How Much is a Mermaid Attracted to a Doughnut?
-
Name: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Category: Circular Motion & Gravity Date Added: 2017-11-20 Submitter: Flipping Physics Understanding Newton’s Universal Law of Gravitation. Including a dramatization of The Cavendish Experiment and force visualization via qualitative examples. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reviewing the standard Force of Gravity or Weight equation 0:56 Newton’s Universal Law of Gravitation 1:48 Defining r 2:47 The Cavendish Experiment 3:52 Visualizing qualitative examples 5:59 When to use the two Force of Gravity equations Next Video: How Much is a Mermaid Attracted to a Doughnut? Thank you to Bronson Hoover of dnbstudios for letting me use his original composition Bèke as Henry Cavendish’s background music. Multilingual? Please help translate Flipping Physics videos! Previous Video: Conical Pendulum Demonstration and Problem Please support me on Patreon! Thank you to Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Newton's Universal Law of Gravitation Introduction (The Big G Equation)
-
- universal gravitation
- gravitation
- (and 8 more)
-
Name: Conical Pendulum Demonstration and Problem Category: Rotational Motion Date Added: 2017-11-12 Submitter: Flipping Physics A conical pendulum is demonstrated and it’s angular velocity is determined. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:54 Illustrating how this is a conical pendulum 1:25 Drawing the free body diagram 2:50 Breaking the force of tension into its components 3:53 Summing the forces in the y-direction 4:34 Summing the forces in the in-direction 5:25 Solving for the radius 7:23 Determining the angular direction 8:02 Comparing our answer to the demonstration 8:51 The Physics Works! Next Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Multilingual? Please help translate Flipping Physics videos! Previous Video: The Right Hand Rule for Angular Velocity and Angular Displacement Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. Conical Pendulum Demonstration and Problem
-
- angular velocity
- right hand rule
- (and 4 more)
-
Name: Minimum Speed for Water in a Bucket Revolving in a Vertical Circle Category: Rotational Motion Date Added: 2017-10-30 Submitter: Flipping Physics What is the minimum angular speed necessary to keep water in a vertically revolving bucket? The rope radius is 0.77 m. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:13 The demonstration 0:35 Understanding the problem 1:04 Where do we draw the Free Body Diagram 2:06 Summing the forces 3:04 What happens at the minimum angular speed 3:53 Why the force of tension is zero 4:41 Solving the problem Next Video: The Right Hand Rule for Angular Velocity and Angular Displacement Multilingual? Please help translate Flipping Physics videos! Previous Video: Analyzing Water in a Bucket Revolving in a Vertical Circle Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Minimum Speed for Water in a Bucket Revolving in a Vertical Circle
-
Name: Analyzing Water in a Bucket Revolving in a Vertical Circle Category: Rotational Motion Date Added: 2017-10-23 Submitter: Flipping Physics Analyzing the forces acting on a bucket of water which is revolving in a vertical circle. Want Lecture Notes? This is an AP Physics 1 topic. A big thank you to Mr. Becke for being a guest in today’s video! Content Times: 0:11 The demonstration 0:24 Drawing four Free Body Diagrams 1:30 Summing the forces with the bucket at the bottom 2:27 What is the centripetal force? 3:28 Why the Force Normal greater than the Force of Gravity with Mr. Becke! Next Video: Minimum Speed for Water in a Bucket Revolving in a Vertical Circle Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating Why Water Stays in a Bucket Revolving in a Vertical Circle Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Analyzing Water in a Bucket Revolving in a Vertical Circle
-
Name: Demonstrating Why Water Stays in a Bucket Revolving in a Vertical Circle Category: Rotational Motion Date Added: 2017-10-15 Submitter: Flipping Physics Yes, water stays in the bucket. Would you like to know why? Watch the video and learn! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 The demonstration 0:52 Why does water flow out of a bucket? 1:40 Inertia! 2:38 Visualizing why Next Video: Analyzing Water in a Bucket Revolving in a Vertical Circle Multilingual? Please help translate Flipping Physics videos! Previous Video: Determining the Force Normal on a Toy Car moving up a Curved Hill Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Demonstrating Why Water Stays in a Bucket Revolving in a Vertical Circle
-
Name: Determining the Force Normal on a Toy Car moving up a Curved Hill Category: Rotational Motion Date Added: 2017-10-08 Submitter: Flipping Physics A 0.453 kg toy car moving at 1.15 m/s is going up a semi-circular hill with a radius of 0.89 m. When the hill makes an angle of 32° with the horizontal, what is the magnitude of the force normal on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08: Translating the problem 1:01 Clarifying the angle 1:51 Drawing the free body diagram 3:20 Summing the forces 4:22 How the tangential velocity and force normal change Next Video: Demonstrating Why Water Stays in a Bucket Revolving in a Vertical Circle Multilingual? Please help translate Flipping Physics videos! Previous Video: Mints on a Rotating Turntable - Determining the Static Coefficient of Friction Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Determining the Force Normal on a Toy Car moving up a Curved Hill
-
Name: What is the Maximum Speed of a Car at the Top of a Hill? Category: Rotational Motion Date Added: 2017-10-02 Submitter: Flipping Physics What is the maximum linear speed a car can move over the top of a semi-circular hill without its tires lifting off the ground? The radius of the hill is 1.8 meters. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 Drawing the free body diagram and summing the forces 1:45 Why the force normal is zero in this situation 2:26 Finishing the problem Next Video: Determining the Force Normal on a Toy Car moving up a Curved Hill Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Centripetal Force Problem - Car over a Hill Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. What is the Maximum Speed of a Car at the Top of a Hill?
-
- car
- force normal
- (and 9 more)
-
Name: Introductory Centripetal Force Problem - Car over a Hill Category: Rotational Motion Date Added: 2017-09-18 Submitter: Flipping Physics A 453 g toy car moving at 1.05 m/s is going over a semi-circular hill with a radius of 1.8 m. When the car is at the top of the hill, what is the magnitude of the force from the ground on the car? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:49 Drawing the free body diagram 2:43 We need to sum the forces in the in-direction 3:22 The “in-direction” is positive. The “out-direction” is negative 4:06 Identifying the centripetal force in this problem 4:54 Solving the problem … finally. 6:15 Kit compares the magnitudes of the force normal and force of gravity Thank you to Kit from Gorilla Physics for your help with this video!! Next Video: What is the Maximum Speed of a Car at the Top of a Hill? Multilingual? Please help translate Flipping Physics videos! Previous Video: Centripetal Force Introduction and Demonstration Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control Team for this video. Introductory Centripetal Force Problem - Car over a Hill
-
- car
- force normal
- (and 8 more)
-
Name: Centripetal Acceleration Introduction Category: Rotational Motion Date Added: 2017-08-28 Submitter: Flipping Physics Why is there a “center seeking” centripetal acceleration? A step-by-step walk through of the answer to this question. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Which mint has the largest angular velocity? 1:14 What do we know about the angular and tangential accelerations of the mints? 2:21 What do we know about the tangential velocity of mint #3? 3:39 Centripetal acceleration introduction 4:44 The centripetal acceleration equations 5:35 The units for centripetal acceleration Next Video: Introductory Centripetal Acceleration Problem - Cylindrical Space Station Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating the Directions of Tangential Velocity and Acceleration Please support me on Patreon! Thank you to Christopher Becke and Aarti Sangwan for being my Quality Control Team for this video. Centripetal Acceleration Introduction
-
Name: Demonstrating the Directions of Tangential Velocity and Acceleration Category: Rotational Motion Date Added: 2017-08-21 Submitter: Flipping Physics The best way to understand how tangential velocity and tangential acceleration are related is to visualize from above. Will you look at that! This video does exactly that. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Visualizing up the three parts of the demonstration 0:51 Visualizing the tangential velocities 1:41 Visualizing the tangential accelerations 3:11 Visualizing tangential velocities and accelerations simultaneously 4:52 Angular vs. Tangential quantities Next Video: Centripetal Acceleration Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Tangential Acceleration Introduction with Example Problem - Mints on a Turntable Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Demonstrating the Directions of Tangential Velocity and Acceleration
-
- direction
- demonstration
- (and 4 more)
-
Name: Tangential Acceleration Introduction with Example Problem - Mints on a Turntable Category: Rotational Motion Date Added: 2017-08-13 Submitter: Flipping Physics Tangential Acceleration is introduced and visualized. Example problem is worked through. We even relate arc length, tangential velocity, and tangential acceleration via the derivative! Example: A record player is plugged in and uniformly accelerates to 45 revolutions per minute in 0.85 seconds. Mints are located 3.0 cm, 8.0 cm, and 13.0 cm from the center of the record. What is the magnitude of the tangential acceleration of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:21 The tangential acceleration equation 0:55 Translating the example problem 2:13 Solving for angular acceleration 3:02 Solving for tangential accelerations 4:16 Visualizing the tangential accelerations 5:05 Using the derivative to relate arc length, tangential velocity, and tangential acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Demonstrating the Directions of Tangential Velocity and Acceleration Previous Video: Introductory Tangential Velocity Problem - Mints on a Turntable Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Tangential Acceleration Introduction with Example Problem - Mints on a Turntable
-
- tangential velocity
- arc length
- (and 8 more)
-
Name: Introductory Tangential Velocity Problem - Mints on a Turntable Category: Rotational Motion Date Added: 2017-08-08 Submitter: Flipping Physics Three mints are sitting 3.0 cm, 8.0 cm, and 13.0 cm from the center of a record player that is spinning at 45 revolutions per minute. What are the tangential velocities of each mint? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:11 Solving the problem 2:12 Visualizing the tangential velocities 2:42 The direction of tangential velocity Multilingual? Please help translate Flipping Physics videos! Next Video: Tangential Acceleration Introduction with Example Problem - Mints on a Turntable Previous Video: Human Tangential Velocity Demonstration Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Introductory Tangential Velocity Problem - Mints on a Turntable
-
Name: Human Tangential Velocity Demonstration Category: Rotational Motion Date Added: 2017-07-30 Submitter: Flipping Physics Humans are best for demonstrating Tangential Velocity and understanding that it is not the same as angular velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 Beginning the demonstration 1:19 Adding the last human 1:50 What was different for each human? 2:44 Visualizing tangential velocity using an aerial view Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Tangential Velocity Problem - Mints on a Turntable Previous Video: Introductory Uniformly Angularly Accelerated Motion Problem - A CD Player Please support me on Patreon! Thank you to Christopher Becke and Natasha Trousdale for being my Quality Control Team for this video. Human Tangential Velocity Demonstration
-
- example
- demonstration
- (and 6 more)
-
Name: Introductory Uniformly Angularly Accelerated Motion Problem - A CD Player Category: Rotational Motion Date Added: 2017-07-23 Submitter: Flipping Physics What is the angular acceleration of a compact disc that turns through 3.25 revolutions while it uniformly slows to a stop in 2.27 seconds? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:52 Determining which Uniformly Angularly Accelerated Motion (UαM) equation to use 1:54 Using a second UαM equation Multilingual? Please help translate Flipping Physics videos! Next Video: Human Tangential Velocity Demonstration Previous Video: Uniformly Angularly Accelerated Motion Introduction Please support me on Patreon! Thank you to Christopher Becke for being my Quality Control Team for this video. Introductory Uniformly Angularly Accelerated Motion Problem - A CD Player
-
- demonstration
- angularly
- (and 3 more)
-
Name: Uniformly Angularly Accelerated Motion Introduction Category: Rotational Motion Date Added: 2017-07-17 Submitter: Flipping Physics Using Uniformly Accelerated Motion (UAM) as a framework to learn about Uniformly Angularly Accelerated Motion (UαM). Just like UAM, UαM has 5 variables, 4 equations and if you know 3 of the UαM variables, you can determine the other 2 UαM variables, which leaves you with 1 … Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:15 Introducing Uniformly Angularly Accelerated Motion! (UαM) 0:38 Reviewing Uniformly Accelerated Motion 1:22 When can we use the UαM Equations? 2:24 The four UαM Equations 4:20 Examples of objects in UαM 4:48 Average and instantaneous angular velocity and the UαM equations Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Uniformly Angularly Accelerated Motion Problem - A CD Player Previous Video: Angular Accelerations of a Record Player Please support me on Patreon! Thank you to Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Uniformly Angularly Accelerated Motion Introduction
-
- variable
- demonstration
- (and 5 more)
-
Name: Angular Accelerations of a Record Player Category: Rotational Motion Date Added: 2017-07-11 Submitter: Flipping Physics A record player is plugged in, uniformly accelerates to 45 revolutions per minute, and then is unplugged. The record player (a) takes 0.85 seconds to get up to speed, (b) spends 3.37 seconds at 45 rpms, and then (c) takes 2.32 seconds to slow down to a stop. What is the average angular acceleration of the record player during all three parts? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 2:35 Solving part (a) - angular acceleration while speeding up 3:13 Solving part (b) - angular acceleration at a constant angular velocity 3:57 Solving part (c) - angular acceleration while slowing down 4:36 Reflecting on all 3 parts simultaneously Multilingual? Please help translate Flipping Physics videos! Next Video: Uniformly Angularly Accelerated Motion Introduction Previous Video: Angular Acceleration Introduction Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control team for this video. Angular Accelerations of a Record Player
-
- average
- acceleration
- (and 11 more)
-
Name: Angular Acceleration Introduction Category: Rotational Motion Date Added: 2017-07-11 Submitter: Flipping Physics Angular acceleration is introduced by way of linear acceleration. The units of radians per second squared are discussed. Examples of objects which angular acceleration are shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:23 Average angular acceleration 1:02 Angular acceleration units 1:37 Demonstrating objects which have angular acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Accelerations of a Record Player Previous Video: Introductory Angular Velocity Problem - A Turning Bike Tire Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control team for this video. Angular Acceleration Introduction
-
- radians per second squared
- revolutions
- (and 8 more)
-
Name: Introductory Angular Velocity Problem - A Turning Bike Tire Category: Rotational Motion Date Added: 2017-06-26 Submitter: Flipping Physics The wheel of a bike rotates exactly 3 times in 12.2 seconds. What is the average angular velocity of the wheel in (a) radians per second and (b) revolutions per minute? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 1:32 Solving for the angular velocity in radians per second 2:22 Converting from radians per second to revolutions per minute 3:24 Three common mistakes made by students when doing this conversion. 4:37 Alternate and easier solution for part b Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Acceleration Introduction Previous Video: Angular Velocity Introduction Please support me on Patreon! Thank you to Scott Carter and Christopher Becke for being my Quality Control team for this video. Introductory Angular Velocity Problem - A Turning Bike Tire
-
- angular
- angular velocity
- (and 17 more)
-
Name: Introductory Arc Length Problem - Gum on a Bike Tire Category: Rotational Motion Date Added: 2017-06-12 Submitter: Flipping Physics How far does a piece of gum stuck to the outside of a 67 cm diameter wheel travel while the wheel rotates through 149°? A conversion from revolutions to degrees is performed. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reading, visualizing, and translating the problem 1:22 Solving the problem 1:51 Converting from revolutions to radians 3:09 Measuring our answer Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Velocity Introduction Previous Video: Defining Pi for Physics Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control team for this video. Introductory Arc Length Problem - Gum on a Bike Tire
-
Name: Defining Pi for Physics Category: Rotational Motion Date Added: 2017-06-04 Submitter: Flipping Physics Pi is defined as the ratio of the circumference of a circle to its diameter. A frisbee is used to show the definition of pi. The units for pi, radians, are discussed. The conversion factor between revolutions, degrees, and radians is introduced. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:22 The definition of pi 0:49 Demonstrating the definition of pi 1:35 The units for pi (radians) 2:04 revolutions, degrees, and radians 2:28 Please use rad for radians (not r, that is for radius) Multilingual? Please help translate Flipping Physics videos! Next Video: Introductory Arc Length Problem - Gum on a Bike Tire Previous Video: Introduction to Circular Motion and Arc Length Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control team for this video. Defining Pi for Physics
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.