Search the Community
Showing results for tags 'linear'.

Calculus based review of conservation of momentum, the momentum version of Newton’s second law, the ImpulseMomentum Theorem, impulse approximation, impact force, elastic, inelastic and perfectly inelastic collisions, position, velocity and acceleration of the center of mass of a system of particles, center of mass of a rigid object with shape, and volumetric, surface and linear mass densities. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:11 Momentum 0:38 Momentum and Newton’s Second Law 1:44 Conservation of Momentum 2:35 ImpulseMomentum Theorem 4:23 Impulse Approximation and Force of Impact 5:32 Elastic, Inelastic, and Perfectly Inelastic Collisions 6:39 Position of the Center of Mass of a System of Particles 7:19 Velocity of the Center of Mass of a System of Particles 7:54 Acceleration of the Center of Mass of a System of Particles 8:31 Center of Mass of a Rigid Object with Shape 10:09 Volumetric, Surface, and Linear Mass Density Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Rotational Kinematics Review (Mechanics) Previous Video: AP Physics C: Integrals in Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan, Jordan Bueno, and Michael Nelson for being my Quality Control team for this video.

 linear
 conservation of momentum
 (and 17 more)

Calculus based review and comparison of the linear and rotational equations which are in the AP Physics C mechanics curriculum. Topics include: displacement, velocity, acceleration, uniformly accelerated motion, uniformly angularly accelerated motion, mass, momentum of inertia, kinetic energy, Newton’s second law, force, torque, power, and momentum. Want Lecture Notes? Content Times: 0:12 Displacement 038 Velocity 1:08 Acceleration 1:33 Uniformly Accelerated Motion 2:15 Uniformly Angularly Accelerated Motion 2:34 Mass 3:19 Kinetic Energy 3:44 Newton’s Second Law 4:18 Force and Torque 5:12 Power 5:45 Momentum Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Universal Gravitation Review (Mechanics) Previous Video: AP Physics C: Rotational Dynamics Review  2 of 2 (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video.

Name: AP Physics C: Rotational vs. Linear Review (Mechanics) Category: Rotational Motion Date Added: 20170428 Submitter: Flipping Physics Calculus based review and comparison of the linear and rotational equations which are in the AP Physics C mechanics curriculum. Topics include: displacement, velocity, acceleration, uniformly accelerated motion, uniformly angularly accelerated motion, mass, momentum of inertia, kinetic energy, Newton’s second law, force, torque, power, and momentum. Want Lecture Notes? Content Times: 0:12 Displacement 038 Velocity 1:08 Acceleration 1:33 Uniformly Accelerated Motion 2:15 Uniformly Angularly Accelerated Motion 2:34 Mass 3:19 Kinetic Energy 3:44 Newton’s Second Law 4:18 Force and Torque 5:12 Power 5:45 Momentum Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Universal Gravitation Review (Mechanics) Previous Video: AP Physics C: Rotational Dynamics Review  2 of 2 (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video. AP Physics C: Rotational vs. Linear Review (Mechanics)

Name: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Category: Momentum and Collisions Date Added: 20170428 Submitter: Flipping Physics Calculus based review of conservation of momentum, the momentum version of Newton’s second law, the ImpulseMomentum Theorem, impulse approximation, impact force, elastic, inelastic and perfectly inelastic collisions, position, velocity and acceleration of the center of mass of a system of particles, center of mass of a rigid object with shape, and volumetric, surface and linear mass densities. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:11 Momentum 0:38 Momentum and Newton’s Second Law 1:44 Conservation of Momentum 2:35 ImpulseMomentum Theorem 4:23 Impulse Approximation and Force of Impact 5:32 Elastic, Inelastic, and Perfectly Inelastic Collisions 6:39 Position of the Center of Mass of a System of Particles 7:19 Velocity of the Center of Mass of a System of Particles 7:54 Acceleration of the Center of Mass of a System of Particles 8:31 Center of Mass of a Rigid Object with Shape 10:09 Volumetric, Surface, and Linear Mass Density Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Rotational Kinematics Review (Mechanics) Previous Video: AP Physics C: Integrals in Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan, Jordan Bueno, and Michael Nelson for being my Quality Control team for this video. AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics)

 linear
 conservation of momentum
 (and 17 more)

Demonstrations of and Introduction to Conservation of Momentum Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:10 Deriving Conservation of Momentum 1:33 Demonstrating Conservation of Momentum 1:53 Analyzing the demonstration 3:29 How a rocket works Next Video: Introductory Conservation of Momentum Explosion Problem Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: How to Wear A Helmet  A PSA from Flipping Physics Please support me on Patreon!

 internal force
 net force
 (and 7 more)

Name: Introductory Conservation of Momentum Explosion Problem Demonstration Category: Momentum and Collisions Date Added: 20161013 Submitter: Flipping Physics Now that we have learned about conservation of momentum, let’s apply what we have learned to an “explosion”. Okay, it’s really just the nerdapult launching a ball while on momentum carts. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:38 The demonstration 1:16 The known values 2:07 Solving the problem using conservation of momentum 4:00 Measuring the final velocity of the nerdapult 4:39 Determining relative error 5:09 What happens with a less massive projectile? Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Conservation of Momentum with Demonstrations Please support me on Patreon! Introductory Conservation of Momentum Explosion Problem Demonstration

 conservation
 momentum
 (and 10 more)

Now that we have learned about conservation of momentum, let’s apply what we have learned to an “explosion”. Okay, it’s really just the nerdapult launching a ball while on momentum carts. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:38 The demonstration 1:16 The known values 2:07 Solving the problem using conservation of momentum 4:00 Measuring the final velocity of the nerdapult 4:39 Determining relative error 5:09 What happens with a less massive projectile? Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Conservation of Momentum with Demonstrations Please support me on Patreon!

 conservation
 momentum
 (and 10 more)

Name: Introduction to Conservation of Momentum with Demonstrations Category: Momentum and Collisions Date Added: 20161013 Submitter: Flipping Physics Demonstrations of and Introduction to Conservation of Momentum Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:10 Deriving Conservation of Momentum 1:33 Demonstrating Conservation of Momentum 1:53 Analyzing the demonstration 3:29 How a rocket works Next Video: Introductory Conservation of Momentum Explosion Problem Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: How to Wear A Helmet  A PSA from Flipping Physics Please support me on Patreon! Introduction to Conservation of Momentum with Demonstrations

 conservation
 momentum
 (and 7 more)

An 8.53 kg pumpkin is dropped from a height of 8.91 m. Will the graph of instantaneous power delivered by the force of gravity as a function of _____ be linear? If not, what would you change to make the graph linear? (a) Time, (b) Position. Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:12 The example 1:08 The equation for instantaneous power 1:43 Part (a): Solving for velocity as a function of time 2:55 Part (a): Solving for power as a function of time 3:23 Part (a): Is power as a function of time linear? 4:26 Part (a): Graphing power as a function of time 5:03 Part (b): Solving for velocity as a function of position 5:58 Part (b): Solving for power as a function of position 7:02 Part (b): Is power as a function of position linear? 7:38 Part (b): How can we make the graph linear? 8:33 Part (b): Graphing power squared as a function of position Next Video: Average Power Delivered by a Car Engine  Example Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Average and Instantaneous Power Example Please support me on Patreon!

 pumkin
 instantaneous

(and 5 more)
Tagged with:

Name: Graphing Instantaneous Power Category: Work, Energy, Power Date Added: 20160628 Submitter: Flipping Physics An 8.53 kg pumpkin is dropped from a height of 8.91 m. Will the graph of instantaneous power delivered by the force of gravity as a function of _____ be linear? If not, what would you change to make the graph linear? (a) Time, (b) Position. Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:12 The example 1:08 The equation for instantaneous power 1:43 Part (a): Solving for velocity as a function of time 2:55 Part (a): Solving for power as a function of time 3:23 Part (a): Is power as a function of time linear? 4:26 Part (a): Graphing power as a function of time 5:03 Part (b): Solving for velocity as a function of position 5:58 Part (b): Solving for power as a function of position 7:02 Part (b): Is power as a function of position linear? 7:38 Part (b): How can we make the graph linear? 8:33 Part (b): Graphing power squared as a function of position Next Video: Average Power Delivered by a Car Engine  Example Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Average and Instantaneous Power Example Please support me on Patreon! Graphing Instantaneous Power
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.