Search the Community
Showing results for tags 'newton'.

Calculate the altitude of a satellite in geosynchronous orbit or geostationary orbit. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 What is geosynchronous orbit? 0:47 Drawing the free body diagram and starting to solve the problem 3:02 Solving for the satellite’s angular velocity 4:05 Identifying the masses and radii 5:25 Defining “r” and solving for altitude 6:29 The physics works! Next Video: Dropping a Bucket of Water  Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 geosynchronous
 altitude
 (and 6 more)

Derive the acceleration due to gravity on any planet. Find the acceleration due to gravity on Mt. Everest. And determine how much higher you could jump on the top of Mt. Everest! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Deriving the acceleration due to gravity on any planet 1:54 Finding the acceleration due to gravity on Mt. Everest 3:16 How much higher could you jump on the top of Mt. Everest? Next Video: Altitude of Geosynchronous Orbit (aka Geostationary Orbit) Multilingual? Please help translate Flipping Physics videos! Previous Video: The Force of Gravitational Attraction between the Earth and the Moon Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

Name: Altitude of Geostationary Orbit (a special case of Geosynchronous Orbit) Category: Circular Motion & Gravity Date Added: 20180107 Submitter: Flipping Physics Calculate the altitude of a satellite in geosynchronous orbit or geostationary orbit. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 What is geosynchronous orbit? 0:47 Drawing the free body diagram and starting to solve the problem 3:02 Solving for the satellite’s angular velocity 4:05 Identifying the masses and radii 5:25 Defining “r” and solving for altitude 6:29 The physics works! Next Video: Dropping a Bucket of Water  Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Altitude of Geostationary Orbit (a special case of Geosynchronous Orbit)

 geosynchronous
 altitude
 (and 6 more)

Name: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Category: Circular Motion & Gravity Date Added: 20171211 Submitter: Flipping Physics Derive the acceleration due to gravity on any planet. Find the acceleration due to gravity on Mt. Everest. And determine how much higher you could jump on the top of Mt. Everest! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Deriving the acceleration due to gravity on any planet 1:54 Finding the acceleration due to gravity on Mt. Everest 3:16 How much higher could you jump on the top of Mt. Everest? Next Video: Altitude of Geosynchronous Orbit (aka Geostationary Orbit) Multilingual? Please help translate Flipping Physics videos! Previous Video: The Force of Gravitational Attraction between the Earth and the Moon Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest

According to NASA, the mass of the Earth is 5.97 x 10^24 kg, the mass of the Moon is 7.3 x 10^22 kg, and the mean distance between the Earth and the Moon is 3.84 x 10^8 m. What is the force of gravitational attraction between the Earth and the Moon? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:56 Solving the problem 2:15 Determining how long until the Moon crashes into the Earth 4:00 Determining what is wrong with this calculation Next Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Multilingual? Please help translate Flipping Physics videos! Previous Video: How Much is a Mermaid Attracted to a Doughnut? Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

Name: The Force of Gravitational Attraction between the Earth and the Moon Category: Circular Motion & Gravity Date Added: 20171203 Submitter: Flipping Physics According to NASA, the mass of the Earth is 5.97 x 10^24 kg, the mass of the Moon is 7.3 x 10^22 kg, and the mean distance between the Earth and the Moon is 3.84 x 10^8 m. What is the force of gravitational attraction between the Earth and the Moon? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:56 Solving the problem 2:15 Determining how long until the Moon crashes into the Earth 4:00 Determining what is wrong with this calculation Next Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Multilingual? Please help translate Flipping Physics videos! Previous Video: How Much is a Mermaid Attracted to a Doughnut? Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. The Force of Gravitational Attraction between the Earth and the Moon

How Much is a Mermaid Attracted to a Doughnut? A practical, everyday example of Newton’s Universal Law of Gravitation. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 The Force of Gravity Equation 1:47 Solving the problem 2:24 How to do “times ten to the” on your calculator 2:45 Correcting our mistake 3:42 Visualizing these forces 4:14 Why do the objects not move? 5:36 What if the mermaid and donut were the only two objects in the universe? Next Video: The Force of Gravitational Attraction between the Earth and the Moon Multilingual? Please help translate Flipping Physics videos! Previous Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Please support me on Patreon! Thank you to Eric York, Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

Name: How Much is a Mermaid Attracted to a Doughnut? Category: Circular Motion & Gravity Date Added: 20171127 Submitter: Flipping Physics How Much is a Mermaid Attracted to a Doughnut? A practical, everyday example of Newton’s Universal Law of Gravitation. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 The Force of Gravity Equation 1:47 Solving the problem 2:24 How to do “times ten to the” on your calculator 2:45 Correcting our mistake 3:42 Visualizing these forces 4:14 Why do the objects not move? 5:36 What if the mermaid and donut were the only two objects in the universe? Next Video: The Force of Gravitational Attraction between the Earth and the Moon Multilingual? Please help translate Flipping Physics videos! Previous Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Please support me on Patreon! Thank you to Eric York, Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. How Much is a Mermaid Attracted to a Doughnut?

Understanding Newton’s Universal Law of Gravitation. Including a dramatization of The Cavendish Experiment and force visualization via qualitative examples. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reviewing the standard Force of Gravity or Weight equation 0:56 Newton’s Universal Law of Gravitation 1:48 Defining r 2:47 The Cavendish Experiment 3:52 Visualizing qualitative examples 5:59 When to use the two Force of Gravity equations Next Video: How Much is a Mermaid Attracted to a Doughnut? Thank you to Bronson Hoover of dnbstudios for letting me use his original composition Bèke as Henry Cavendish’s background music. Multilingual? Please help translate Flipping Physics videos! Previous Video: Conical Pendulum Demonstration and Problem Please support me on Patreon! Thank you to Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video.
 1 comment

 introduction
 demonstration
 (and 8 more)

Name: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Category: Circular Motion & Gravity Date Added: 20171120 Submitter: Flipping Physics Understanding Newton’s Universal Law of Gravitation. Including a dramatization of The Cavendish Experiment and force visualization via qualitative examples. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reviewing the standard Force of Gravity or Weight equation 0:56 Newton’s Universal Law of Gravitation 1:48 Defining r 2:47 The Cavendish Experiment 3:52 Visualizing qualitative examples 5:59 When to use the two Force of Gravity equations Next Video: How Much is a Mermaid Attracted to a Doughnut? Thank you to Bronson Hoover of dnbstudios for letting me use his original composition Bèke as Henry Cavendish’s background music. Multilingual? Please help translate Flipping Physics videos! Previous Video: Conical Pendulum Demonstration and Problem Please support me on Patreon! Thank you to Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Newton's Universal Law of Gravitation Introduction (The Big G Equation)

 force of gravity
 cavendish
 (and 8 more)

Calculus based review of Newton’s three laws, basic forces in dynamics such as the force of gravity, force normal, force of tension, force applied, force of friction, free body diagrams, translational equilibrium, the drag or resistive force and terminal velocity. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:18 Newton’s First Law 1:30 Newton’s Second Law 1:55 Newton’s Third Law 2:29 Force of Gravity 3:36 Force Normal 3:58 Force of Tension 4:24 Force Applied 4:33 Force of Friction 5:46 Static Friction 6:17 Kinetic Friction 6:33 The Coefficient of Friction 7:26 Free Body Diagrams 10:41 Translational equilibrium 11:41 Drag Force or Resistive Force 13:25 Terminal Velocity Next Video: AP Physics C: Work, Energy, and Power Review (Mechanics) Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan for being my Quality Control help.

 drag
 translational
 (and 19 more)

Name: AP Physics C: Dynamics Review (Mechanics) Category: Dynamics Date Added: 20170323 Submitter: Flipping Physics Calculus based review of Newton’s three laws, basic forces in dynamics such as the force of gravity, force normal, force of tension, force applied, force of friction, free body diagrams, translational equilibrium, the drag or resistive force and terminal velocity. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:18 Newton’s First Law 1:30 Newton’s Second Law 1:55 Newton’s Third Law 2:29 Force of Gravity 3:36 Force Normal 3:58 Force of Tension 4:24 Force Applied 4:33 Force of Friction 5:46 Static Friction 6:17 Kinetic Friction 6:33 The Coefficient of Friction 7:26 Free Body Diagrams 10:41 Translational equilibrium 11:41 Drag Force or Resistive Force 13:25 Terminal Velocity Next Video: AP Physics C: Work, Energy, and Power Review (Mechanics) Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan for being my Quality Control help. AP Physics C: Dynamics Review (Mechanics)

 drag
 translational
 (and 19 more)

We use Newton’s Second Law and Uniformly Accelerated Motion to experimentally determine the Static Coefficient of Friction between Tires and Snow. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Reading and translating the problem 1:03 Visualizing the experiment 1:16 Where to begin? 1:45 Drawing the Free Body Diagram 3:09 Summing the forces in the ydirection 4:47 Summing the forest in the xdirection 6:24 Uniformly Accelerated Motion 7:35 Solving for the coefficient of static friction 8:18 All 9 trials Next Video: Breaking the Force of Gravity into its Components on an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Everybody Brought Mass to the Party! 1¢/minute

 second law
 newton

(and 7 more)
Tagged with:

Name: Determining the Static Coefficient of Friction between Tires and Snow Category: Dynamics Date Added: 20151008 Submitter: Flipping Physics We use Newton’s Second Law and Uniformly Accelerated Motion to experimentally determine the Static Coefficient of Friction between Tires and Snow. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Reading and translating the problem 1:03 Visualizing the experiment 1:16 Where to begin? 1:45 Drawing the Free Body Diagram 3:09 Summing the forces in the ydirection 4:47 Summing the forest in the xdirection 6:24 Uniformly Accelerated Motion 7:35 Solving for the coefficient of static friction 8:18 All 9 trials Next Video: Breaking the Force of Gravity into its Components on an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Everybody Brought Mass to the Party! 1¢/minute Determining the Static Coefficient of Friction between Tires and Snow

Name: An Introductory Tension Force Problem Category: Dynamics Date Added: 20150730 Submitter: Flipping Physics Learn how to solve a basic tension force problem with demonstration! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The Problem Demonstrated 0:29 5 Steps to Solve and Free Body Diagram Problem 0:50 Drawing the Free Body Diagram 2:03 Resolving Tension Force 1 into its components (numbers dependency) 4:00 Introducing the Equation Holster! 5:11 Redraw the Free Body Diagram 5:32 Sum the forces in the ydirection 7:24 Sum the forces in the xdirection 8:29 Demonstrating our solution is correct Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to Static and Kinetic Friction by Bobby Previous Video: 5 Steps to Solve any Free Body Diagram Problem 1¢/minute An Introductory Tension Force Problem

Learn how to solve a basic tension force problem with demonstration! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The Problem Demonstrated 0:29 5 Steps to Solve and Free Body Diagram Problem 0:50 Drawing the Free Body Diagram 2:03 Resolving Tension Force 1 into its components (numbers dependency) 4:00 Introducing the Equation Holster! 5:11 Redraw the Free Body Diagram 5:32 Sum the forces in the ydirection 7:24 Sum the forces in the xdirection 8:29 Demonstrating our solution is correct Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to Static and Kinetic Friction by Bobby Previous Video: 5 Steps to Solve any Free Body Diagram Problem 1¢/minute

Name: 5 Steps to Solve any Free Body Diagram Problem Category: Dynamics Date Added: 20150730 Submitter: Flipping Physics Learn how to solve problems that have Free Body Diagrams! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:15 Step 1) Draw the Free Body Diagram 0:50 Step 2) Break Forces into Components 1:37 Step 3) Redraw the Free Body Diagram 2:15 Step 4) Sum the Forces 2:45 Step 5) Sum the Forces (again) 3:13 Review the 5 Steps Multilingual? Please help translate Flipping Physics videos! Next Video: An Introductory Tension Force Problem Previous Video: Introduction to Equilibrium 1¢/minute: http://www.flippingphysics.com/give.html 5 Steps to Solve any Free Body Diagram Problem

Learn how to solve problems that have Free Body Diagrams! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:15 Step 1) Draw the Free Body Diagram 0:50 Step 2) Break Forces into Components 1:37 Step 3) Redraw the Free Body Diagram 2:15 Step 4) Sum the Forces 2:45 Step 5) Sum the Forces (again) 3:13 Review the 5 Steps Multilingual? Please help translate Flipping Physics videos! Next Video: An Introductory Tension Force Problem Previous Video: Introduction to Equilibrium 1¢/minute: http://www.flippingphysics.com/give.html

Name: Introduction to Equilibrium Category: Dynamics Date Added: 20150730 Submitter: Flipping Physics Learn about and see examples of Translational Equilibrium. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 What happens to an object in equilibrium? 0:40 Using Newton’s 2nd law to describe what happens… 2:16 Example: Book at rest on an incline 2:45 Example: Car moving at a constant velocity 3:18 Translational equilibrium Multilingual? Please help translate Flipping Physics videos! Next Video: 5 Steps to Solve any Free Body Diagram Problem Previous Video: Understanding the Force of Tension 1¢/minute Introduction to Equilibrium

Learn about and see examples of Translational Equilibrium. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 What happens to an object in equilibrium? 0:40 Using Newton’s 2nd law to describe what happens… 2:16 Example: Book at rest on an incline 2:45 Example: Car moving at a constant velocity 3:18 Translational equilibrium Multilingual? Please help translate Flipping Physics videos! Next Video: 5 Steps to Solve any Free Body Diagram Problem Previous Video: Understanding the Force of Tension 1¢/minute

Review of the Universal Gravitation topics covered in the AP Physics 1 curriculum. Want [url="http://www.flippingphysics.com/ap1gravitationreview.html"]Lecture Notes[/url]? Content Times: 0:14 Newtonâ€™s Universal Law of Gravitation 1:20 When to use the Two Force of Gravity equations 1:52 Solving for the acceleration due to gravity 2:45 Local and Global Gravitational Fields 3:34 Orbiting Satellite Example 5:03 Universal Gravitational Potential Energy 6:19 Why Universal Gravitational Potential Energy is less than or equal to zero 7:47 Must have two objects for gravitational potential energy Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Next Video: [url="http://www.flippingphysics.com/ap1shmreview.html"]AP Physics 1: Simple Harmonic Motion Review[/url] Previous Video: [url="http://www.flippingphysics.com/ap1rotationalkinematicsreview.html"]AP Physics 1: Rotational Kinematics Review[/url] [url="http://www.flippingphysics.com/give.html"]1Â¢/minute[/url]

Review of the topics of Linear Momentum and Impulse covered in the AP Physics 1 curriculum. Content Times: 0:16 Linear Momentum 0:51 Conservation of Momentum 1:26 Types of Collisions 2:29 Newtonâ€™s Second Law in terms of Momentum 3:16 Impulse 4:11 Impulse during collisions Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Want [url="http://www.flippingphysics.com/ap1momentumreview.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/ap1rotationalkinematicsreview.html"]Rotational Kinematics Review for AP Physics 1[/url] Previous Video: [url="http://www.flippingphysics.com/ap1workreview.html"]Work, Energy and Power Review for AP Physics 1[/url] [url="http://www.flippingphysics.com/helmet.html"]How to Wear A Helmet  A PSA from Flipping Physics[/url] [url="http://www.flippingphysics.com/give.html"]1Â¢/minute[/url]

Name: Linear Momentum and Impulse Review for AP Physics 1 Category: Exam Prep Date Added: 18 March 2015  10:30 AM Submitter: Flipping Physics Short Description: None Provided Review of the topics of Linear Momentum and Impulse covered in the AP Physics 1 curriculum. Content Times: 0:16 Linear Momentum 0:51 Conservation of Momentum 1:26 Types of Collisions 2:29 Newtonâ€™s Second Law in terms of Momentum 3:16 Impulse 4:11 Impulse during collisions Multilingual? View Video

Proof that the Force Normal and the Force of Gravity are not a Newtonâ€™s Third Law Force Pair. Content Times: 0:26 Drawing the Free Body Diagram 1:02 Not a Newtonâ€™s Third Law Force Pair 1:37 The Force Normal Force Pair 1:55 The Force of Gravity Force Pair Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Want [url="http://www.flippingphysics.com/thirdlawmisconception.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/tensionforce.html"]Understanding the Tension Force[/url] Previous Video: [url="http://www.flippingphysics.com/thirdlaw.html"]Introduction to Newton's Third Law[/url] [url="http://www.flippingphysics.com/give.html"]1Â¢/minute[/url]
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.