Search the Community
Showing results for tags 'newton'.

Name: Altitude of Geostationary Orbit (a special case of Geosynchronous Orbit) Category: Circular Motion & Gravity Date Added: 20180107 Submitter: Flipping Physics Calculate the altitude of a satellite in geosynchronous orbit or geostationary orbit. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 What is geosynchronous orbit? 0:47 Drawing the free body diagram and starting to solve the problem 3:02 Solving for the satellite’s angular velocity 4:05 Identifying the masses and radii 5:25 Defining “r” and solving for altitude 6:29 The physics works! Next Video: Dropping a Bucket of Water  Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Altitude of Geostationary Orbit (a special case of Geosynchronous Orbit)

 geosynchronous
 altitude
 (and 6 more)

Name: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Category: Circular Motion & Gravity Date Added: 20171211 Submitter: Flipping Physics Derive the acceleration due to gravity on any planet. Find the acceleration due to gravity on Mt. Everest. And determine how much higher you could jump on the top of Mt. Everest! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Deriving the acceleration due to gravity on any planet 1:54 Finding the acceleration due to gravity on Mt. Everest 3:16 How much higher could you jump on the top of Mt. Everest? Next Video: Altitude of Geosynchronous Orbit (aka Geostationary Orbit) Multilingual? Please help translate Flipping Physics videos! Previous Video: The Force of Gravitational Attraction between the Earth and the Moon Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest

Name: The Force of Gravitational Attraction between the Earth and the Moon Category: Circular Motion & Gravity Date Added: 20171203 Submitter: Flipping Physics According to NASA, the mass of the Earth is 5.97 x 10^24 kg, the mass of the Moon is 7.3 x 10^22 kg, and the mean distance between the Earth and the Moon is 3.84 x 10^8 m. What is the force of gravitational attraction between the Earth and the Moon? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:56 Solving the problem 2:15 Determining how long until the Moon crashes into the Earth 4:00 Determining what is wrong with this calculation Next Video: Deriving the Acceleration due to Gravity on any Planet and specifically Mt. Everest Multilingual? Please help translate Flipping Physics videos! Previous Video: How Much is a Mermaid Attracted to a Doughnut? Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. The Force of Gravitational Attraction between the Earth and the Moon

Name: How Much is a Mermaid Attracted to a Doughnut? Category: Circular Motion & Gravity Date Added: 20171127 Submitter: Flipping Physics How Much is a Mermaid Attracted to a Doughnut? A practical, everyday example of Newton’s Universal Law of Gravitation. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:42 The Force of Gravity Equation 1:47 Solving the problem 2:24 How to do “times ten to the” on your calculator 2:45 Correcting our mistake 3:42 Visualizing these forces 4:14 Why do the objects not move? 5:36 What if the mermaid and donut were the only two objects in the universe? Next Video: The Force of Gravitational Attraction between the Earth and the Moon Multilingual? Please help translate Flipping Physics videos! Previous Video: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Please support me on Patreon! Thank you to Eric York, Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. How Much is a Mermaid Attracted to a Doughnut?

Name: Newton's Universal Law of Gravitation Introduction (The Big G Equation) Category: Circular Motion & Gravity Date Added: 20171120 Submitter: Flipping Physics Understanding Newton’s Universal Law of Gravitation. Including a dramatization of The Cavendish Experiment and force visualization via qualitative examples. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 Reviewing the standard Force of Gravity or Weight equation 0:56 Newton’s Universal Law of Gravitation 1:48 Defining r 2:47 The Cavendish Experiment 3:52 Visualizing qualitative examples 5:59 When to use the two Force of Gravity equations Next Video: How Much is a Mermaid Attracted to a Doughnut? Thank you to Bronson Hoover of dnbstudios for letting me use his original composition Bèke as Henry Cavendish’s background music. Multilingual? Please help translate Flipping Physics videos! Previous Video: Conical Pendulum Demonstration and Problem Please support me on Patreon! Thank you to Scott Carter, Jonathan Everett, and Christopher Becke for being my Quality Control Team for this video. Newton's Universal Law of Gravitation Introduction (The Big G Equation)

 universal gravitation
 gravitation
 (and 8 more)

Name: AP Physics C: Dynamics Review (Mechanics) Category: Dynamics Date Added: 20170323 Submitter: Flipping Physics Calculus based review of Newton’s three laws, basic forces in dynamics such as the force of gravity, force normal, force of tension, force applied, force of friction, free body diagrams, translational equilibrium, the drag or resistive force and terminal velocity. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:18 Newton’s First Law 1:30 Newton’s Second Law 1:55 Newton’s Third Law 2:29 Force of Gravity 3:36 Force Normal 3:58 Force of Tension 4:24 Force Applied 4:33 Force of Friction 5:46 Static Friction 6:17 Kinetic Friction 6:33 The Coefficient of Friction 7:26 Free Body Diagrams 10:41 Translational equilibrium 11:41 Drag Force or Resistive Force 13:25 Terminal Velocity Next Video: AP Physics C: Work, Energy, and Power Review (Mechanics) Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan for being my Quality Control help. AP Physics C: Dynamics Review (Mechanics)

 drag
 translational
 (and 19 more)

Name: Determining the Static Coefficient of Friction between Tires and Snow Category: Dynamics Date Added: 20151008 Submitter: Flipping Physics We use Newton’s Second Law and Uniformly Accelerated Motion to experimentally determine the Static Coefficient of Friction between Tires and Snow. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Reading and translating the problem 1:03 Visualizing the experiment 1:16 Where to begin? 1:45 Drawing the Free Body Diagram 3:09 Summing the forces in the ydirection 4:47 Summing the forest in the xdirection 6:24 Uniformly Accelerated Motion 7:35 Solving for the coefficient of static friction 8:18 All 9 trials Next Video: Breaking the Force of Gravity into its Components on an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Everybody Brought Mass to the Party! 1¢/minute Determining the Static Coefficient of Friction between Tires and Snow

Name: An Introductory Tension Force Problem Category: Dynamics Date Added: 20150730 Submitter: Flipping Physics Learn how to solve a basic tension force problem with demonstration! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The Problem Demonstrated 0:29 5 Steps to Solve and Free Body Diagram Problem 0:50 Drawing the Free Body Diagram 2:03 Resolving Tension Force 1 into its components (numbers dependency) 4:00 Introducing the Equation Holster! 5:11 Redraw the Free Body Diagram 5:32 Sum the forces in the ydirection 7:24 Sum the forces in the xdirection 8:29 Demonstrating our solution is correct Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to Static and Kinetic Friction by Bobby Previous Video: 5 Steps to Solve any Free Body Diagram Problem 1¢/minute An Introductory Tension Force Problem

Name: 5 Steps to Solve any Free Body Diagram Problem Category: Dynamics Date Added: 20150730 Submitter: Flipping Physics Learn how to solve problems that have Free Body Diagrams! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:15 Step 1) Draw the Free Body Diagram 0:50 Step 2) Break Forces into Components 1:37 Step 3) Redraw the Free Body Diagram 2:15 Step 4) Sum the Forces 2:45 Step 5) Sum the Forces (again) 3:13 Review the 5 Steps Multilingual? Please help translate Flipping Physics videos! Next Video: An Introductory Tension Force Problem Previous Video: Introduction to Equilibrium 1¢/minute: http://www.flippingphysics.com/give.html 5 Steps to Solve any Free Body Diagram Problem

Name: Introduction to Equilibrium Category: Dynamics Date Added: 20150730 Submitter: Flipping Physics Learn about and see examples of Translational Equilibrium. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 What happens to an object in equilibrium? 0:40 Using Newton’s 2nd law to describe what happens… 2:16 Example: Book at rest on an incline 2:45 Example: Car moving at a constant velocity 3:18 Translational equilibrium Multilingual? Please help translate Flipping Physics videos! Next Video: 5 Steps to Solve any Free Body Diagram Problem Previous Video: Understanding the Force of Tension 1¢/minute Introduction to Equilibrium

Name: Linear Momentum and Impulse Review for AP Physics 1 Category: Exam Prep Date Added: 18 March 2015  10:30 AM Submitter: Flipping Physics Short Description: None Provided Review of the topics of Linear Momentum and Impulse covered in the AP Physics 1 curriculum. Content Times: 0:16 Linear Momentum 0:51 Conservation of Momentum 1:26 Types of Collisions 2:29 Newtonâ€™s Second Law in terms of Momentum 3:16 Impulse 4:11 Impulse during collisions Multilingual? View Video

Video Discussion: Dynamics Review for AP Physics 1
Flipping Physics posted a topic in AP Physics 1/2
Name: Dynamics Review for AP Physics 1 Category: Exam Prep Date Added: 09 March 2015  09:36 AM Submitter: Flipping Physics Short Description: None Provided Review of all of the Dynamics topics covered in the AP Physics 1 curriculum. Content Times: 0:18 Inertial Mass vs. Gravitational Mass 1:14 Newtonâ€™s First Law of Motion 2:20 Newtonâ€™s Second Law of Motion 3:17 Free Body Diagrams 4:29 Force of Gravity or Weight 4:41 Force Normal 5:32 Force of Friction 7:32 Newtonâ€™s Third Law of Motion 8:20 Inclines 9:41 Translational Equilibrium Multilingual? View Video 
Name: A Common Misconception about Newton's Third Law Force Pairs (or ActionReaction Pairs) Category: Dynamics Date Added: 09 February 2015  02:24 PM Submitter: Flipping Physics Short Description: None Provided Proof that the Force Normal and the Force of Gravity are not a Newtonâ€™s Third Law Force Pair. Content Times: 0:26 Drawing the Free Body Diagram 1:02 Not a Newtonâ€™s Third Law Force Pair 1:37 The Force Normal Force Pair 1:55 The Force of Gravity Force Pair Multilingual? View Video

Name: Introduction to Newtonâ€™s Third Law of Motion Category: Dynamics Date Added: 19 January 2015  10:48 AM Submitter: Flipping Physics Short Description: None Provided Learn about Newtonâ€™s Third Law of Motion. Several examples of Newtonâ€™s Third Law Force Pairs are demonstrated and discussed. We even travel to Dandong, China. Content Times: 0:10 Newtonâ€™s Third Law 0:47 Ball and Head Force Pair 1:49 At the Ann Arbor HandsOn Museum 2:35 Why I donâ€™t like the Action/Reaction definition 3:30 Hammer and Nail Force Pair 4:20 Mr.p and Wall Force Pair 4:36 Kevin Zhang and The Great Wall Force Pair 5:23 The Great Wall Location Shots 5:36 Filming the intro Multilingual? View Video

 demonstration
 pair
 (and 8 more)

Name: Using Newton's Second Law to find the Force of Friction Category: Dynamics Date Added: 12 January 2015  11:59 AM Submitter: Flipping Physics Short Description: None Provided In order to use Newtonâ€™s Second Law, you need to correctly draw the Free Body Diagram. This problem explains a common mistake students make involving the force applied. We also review how to find acceleration on a velocity as a function of time graph. Content Times: 0:22 The problem 0:54 Listing our known values 1:51 Drawing the Free Body Diagram 2:17 A common mistake in our Free Body Diagram 3:32 Solving the problem 4:14 Another common mistake 5:07 Why is the acceleration positive? Multilingual? View Video

Name: Summing the Forces is Vector Addition Category: Dynamics Date Added: 06 January 2015  01:59 PM Submitter: Flipping Physics Short Description: None Provided Summing the forces is nothing new, it is vector addition. This video compares summing the forces to graphical vector addition. This video builds off the previous video "View Video

Name: A Three Force Example of Newton's 2nd Law with Components Category: Dynamics Date Added: 16 December 2014  02:17 PM Submitter: Flipping Physics Short Description: None Provided Finding the net force caused by three brothers fighting over a stuffed turtle. We break one vector in to components and find the components of the net force in order to solve for the net force. Content Times: 0:16 My 3 brothers 0:29 The problem 1:13 The givens 1:55 Drawing the Free Body Diagram 2:39 Breaking the Force of Chris in to its components 4:09 Redrawing the Free Body Diagram 4:54 Finding the components of the net force 5:47 Finding the net force 7:10 Finding the direction of the net force 8:02 Shouldnâ€™t Turtle accelerate? 8:39 Directing my brothers Multilingual? View Video

Name: Force vs. Time on a Dynamics Cart Category: Dynamics Date Added: 03 December 2014  10:59 AM Submitter: Flipping Physics Short Description: None Provided When the forces in a free body diagram donâ€™t change students often think that Newtonâ€™s Second Law will yield the same results. This demonstration shows that is not true. This is a stepbystep analysis of tension force as a function of time for a dynamics cart in motion on a horizontal track. Content Times: 0:13 Reviewing known information 0:47 The three parts in this demonstration 1:22 Drawing the two free body diagrams 2:27 Understanding the free body diagrams 3:12 Identifying the String Direction 4:08 Finding the Tension Force during Part #1 6:06 Theoretical vs. Experimental Tension Force during Part #1 6:28 Finding the Tension Force during Part #2 7:52 Theoretical vs. Experimental Tension Force during Part #2 8:13 Finding the Maximum Acceleration during Part #3 9:37 Instantaneous vs. Average 10:21 All the graphs sequentially Multilingual? View Video

 demonstration
 law

(and 8 more)
Tagged with:

Name: Introductory Newton's 2nd Law Example Problem and Demonstration Category: Dynamics Date Added: 25 November 2014  02:12 PM Submitter: Flipping Physics Short Description: None Provided This video could also be called "Finding the Force of Friction between a Dynamics Cart and Trackâ€ because we use Newtonâ€™s Second Law to analyze a demonstration and show how negligible the force of friction really is. Content Times: 0:16 Reading the problem 0:37 Demonstrating the problem 2:30 Translating the problem 3:47 Drawing the free body diagram 4:36 Summing the forces in the x direction 5:32 Solving for acceleration 7:04 Solving for the force applied 7:29 Is the force of friction negligible? Multilingual? View Video

 free body diagram
 maximum

(and 8 more)
Tagged with:

Name: Introduction to Newtonâ€™s Second Law of Motion with Example Problem Category: Dynamics Date Added: 21 November 2014  02:38 PM Submitter: Flipping Physics Short Description: None Provided The application of Newtonâ€™s Second Law is when you really understand what the net force equals mass times acceleration where both force and acceleration are vectors really means. Therefore, we introduce Newtonâ€™s Second Law and then do an example problem. Content Times: 0:11 Defining Newtonâ€™s Second Law 1:00 The example problem 1:51 Drawing the Free Body Diagram 2:48 The Force of Gravity 3:42 The net force in the ydirection 5:28 The acceleration of the book in the ydirection 6:38 The net force in the xdirection 7:59 Solving for the dimensions of acceleration 8:54 Constant net force means constant acceleration Multilingual? View Video

 acceleration
 mass

(and 8 more)
Tagged with:

Name: Weight and Mass are Not the Same Category: Dynamics Date Added: 10 November 2014  10:20 AM Submitter: Flipping Physics Short Description: None Provided Three major differences between weight and mass are discussed and three media examples of weight in kilograms are presented (and you should know that weight is NOT in kilograms). Content Times: 0:18 Base SI dimensions for weight and mass 1:25 NASA: weight in kilograms 1:38 Michio Kaku: weight in kilograms 1:52 Derek Muller of Veritasium: weight in kilograms 2:30 Weight is a vector and mass is a scalar 2:53 Weight is extrinsic and mass is intrinsic 3:52 Comparing weight and mass on the Earth and the moon 4:45 Space elevators Multilingual? View Video

 acceleration
 vector

(and 7 more)
Tagged with:

Name: Introduction to the Force of Gravity and Gravitational Mass Category: Dynamics Date Added: 05 November 2014  09:47 AM Submitter: Flipping Physics Short Description: None Provided Defining the Force of Gravity or Weight and Gravitational Mass. We also determine the dimensions for force in both Metric and English units. Content Times: 0:11 Defining the Force of Gravity or Weight 1:09 Defining Gravitational Mass 2:12 The direction of the Force of Gravity 2:47 Determining the dimensions for force 4:09 The English unit for force 4:54 Slug vs. Blob Multilingual? View Video

 introduction
 slug

(and 8 more)
Tagged with:

Name: How to Wear a Helmet a PSA from Flipping Physics Category: Momentum and Collisions Date Added: 18 September 2014  03:36 PM Submitter: Flipping Physics Short Description: None Provided Wearing a helmet is all about impulse, change in momentum and the force of impact. This video illustrates why you should secure your helmet to your head. Thank you very much to Colton and Jean Johnson who said yes when I asked them if I could film myself riding my bike off their dock. Colton also said, â€œIn my 75 years of living, that has got to be the strangest request I have ever received.â€ Thank you also to Chris Palmer and Larry Braak for being my onsite camera operators. Content Times: 0:19 Are you wearing your helmet? 0:53 Riding my bike off the dock into the lake. 2:15 The helmet falls off 2:40 Newtonâ€™s 2nd Law 4:08 Impulse approximation 5:01 Which variables are NOT dependent on helmet status 6:23 Impulse 7:01 What variables does wearing a helmet change 7:57 This one time I was riding my bike â€¦ 8:50 A contrasting story Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! More Flipping Physics Videos: The Classic Bullet Projectile Motion Experiment & Dropping Dictionaries Doesnâ€™t Defy Gravity, Duh! 1Â¢/minute View Video
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.