Jump to content
Sign in to follow this  
QuantizedFeed

What are Dark Matter and Black Holes?

Recommended Posts

by Briana Purves, 6th period CP Physics

Most people consider dark matter and black holes to be mysteries; however, with the help of scientists and technology, these mysteries can be understood! Dark matter is a nonluminous material that exists in space and can appear in many different forms. Black holes are a region of space with a gravitational field so intense that no matter or radiation can escape it. Black holes also have the ability to deflect light, but dark matter does not. Overall, there are many things that we can learn about both dark matter and black holes.

Nonluminous, dark matter is postulated to exist in space and can take any of several forms, including weakly interacting particles or even high energy randomly moving particles created soon after the Big Bang. Although it is not in the form of visible stars and planets, scientists have deduced the existence of dark matter because there is not enough visible matter in the universe to account for the gravitational effects present in the universe. Research supports that dark matter makes up a substantial percentage of the matter-energy composition of the universe, while the rest is dark energy and “ordinary” visible matter. Dark matter is not in the form of dark clouds filled with normal matter, but can be seen as matter made by baryons particles that are composed of protons, neutrons, and electrons.

Dark matter was originally known as the “missing mass” until Fritz Zwicky discovered that the mass of all the stars in the Coma Cluster of galaxies provided about one percent of the mass required to keep the galaxies from escaping the cluster’s gravitational pull. Missing mass remained a question until the 1970s when two American astronomers proved its existence through the idea that the mass of the galaxy within the orbit of stars must increase linearly with the distance of stars from the galaxy’s center. Also, dark matter is not capable of being composed of antimatter, because scientists would be able to see gamma rays that have been produced when antimatter annihilates with matter. Scientists are still unsure of the exact composition of dark matter, but the most common view is that dark matter is made up of exotic particles called axions, or weakly interacting massive particles.

Conversely, black holes are a region of space that has a gravitational field so intense that no matter or radiation can escape it. The gravity of a black hole is so strong because the matter has been squeezed into the tiny space, not allowing it to escape. People cannot see black holes, as they are invisible to the human eye, and can only be detected by advanced special telescopes. Black holes come in many different sizes and shapes, from the size of a large planet to as small as just one atom. Even the extremely small black holes contain massive amounts of matter inside.

One type of black hole that has been discovered is called a Stellar. Stellars can grow to be up to twenty times as big as the mass of the sun; however, there are black holes that can grow to be even bigger; these black holes are called Supermassives. Supermasssives can have masses up to one million times greater than the sun’s mass. Scientists have found that these Supermassive black holes are most commonly found in the Milky Way (also known as Sagittarius A) and have a mass equal to four-million suns and a few million earths.

Black holes are formed when the center of a star falls in on itself causing a supernova or when an exploding star blasts parts into space. Many black holes cannot be seen today because of the strong gravitational pull of light into the center of the hole. When a black hole and a star are near each other, high energy light is made that can only be seen by satellites and telescopes in space.

Einstein’s Law of General Relativity explains why black holes deflect light. Einstein’s law states that a ray of light arriving from one side of an object is bent inwards so that its apparent direction of origin, when viewed from the opposite side, is seen as a different angle. The observed gravitational effect between masses will result from their warping of space-time. Einstein’s Law of General Relativity predicts that every object’s gravitational field bends light rays which is called gravitational lensing. According to Wikipedia, “A gravitational lens is a distribution of matter between a distant source and an observer, that is capable of bending the light from the source, as it travels towards the observer.” Einstein’s Law of General Relativity also supports that the gravitational fields of massive objects causes a distortion in space-time. Einstein’s Law of General Relativity proves just how black holes have the capability to deflect light, as they are able to bend light rays through its gravity.

People have the capability of learning infinite things about both dark matter and black holes. Such things can include how dark matter is known as a nonluminous material that is postulated to exist in space and that can take any of several forms, while, contrarily, black holes are known as a region of space that has a gravitational field so intense that no matter or radiation can escape. Black holes also have the capability to deflect light, which can be proven by Einstein’s Law of General Relativity and through gravitational lensing. If all of these things can be learned about dark matter and black holes through the writing of this one essay, imagine what can be learned throughout a lifetime.

About the author: IMG_1303 (2)
Briana Purves is not only an excellent physics student, she is an outstanding softball player.

Quantized Magazine. All Rights Reserved.


[url={url}]View the full article[/url]

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...