-
Posts
470 -
Joined
-
Last visited
-
Days Won
1
Flipping Physics last won the day on January 5 2017
Flipping Physics had the most liked content!
About Flipping Physics
- Birthday 04/16/1973
Contact Methods
-
Website URL
http://www.flippingphysics.com
Profile Information
-
Gender
Male
Recent Profile Visitors
Flipping Physics's Achievements
Newbie (1/14)
1
Reputation
-
Name: When is a Pendulum in Simple Harmonic Motion? Category: Oscillations Date Added: 2018-04-22 Submitter: Flipping Physics Demonstrating when a pendulum is in simple harmonic motion. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Reviewing simple harmonic motion 0:24 Showing a pendulum in simple harmonic motion 1:47 Velocities in simple harmonic motion 2:15 Accelerations in simple harmonic motion 2:57 A pendulum’s restoring force 5:07 A maximum of 15° Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Multilingual? Please help translate Flipping Physics videos! Previous Video: Horizontal vs. Vertical Mass-Spring System Please support me on Patreon! Thank you to Christopher Becke, Jonathan Everett, and Aarti Sangwan for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. When is a Pendulum in Simple Harmonic Motion?
-
Name: Horizontal vs. Vertical Mass-Spring System Category: Oscillations Date Added: 2018-04-22 Submitter: Flipping Physics Demonstrating the difference between vertical and horizontal mass-spring systems. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 The impossible frictionless, horizontal mass-spring system 0:44 It’s actually a vertical mass-spring system rotated 90 degrees 1:01 Similarities between horizontal and vertical mass-spring systems Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Next Video: When is a Pendulum in Simple Harmonic Motion? Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions Please support me on Patreon! Thank you to Christopher Becke, Jonathan Everett, and Aarti Sangwan for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Horizontal vs. Vertical Mass-Spring System
-
- restoring force
- demonstrate
- (and 5 more)
-
Name: Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions Category: Oscillations Date Added: 2018-04-15 Submitter: Flipping Physics Identifying the spring force, acceleration, and velocity at the end positions and equilibrium position of simple harmonic motion. Amplitude is also defined and shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Identifying the 3 positions 0:43 Velocity 1:43 Spring Force 2:14 Amplitude 2:30 Acceleration 3:22 Velocity at position 2 4:12 Is simple harmonic motion also uniformly accelerated motion? Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Next Video: Horizontal vs. Vertical Mass-Spring System Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Please support me on Patreon! Thank you to Jonathan Everett, Sawdog, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions
-
- simple harmonic motion
- force
- (and 8 more)
-
Name: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Category: Oscillations Date Added: 2018-04-15 Submitter: Flipping Physics Simple Harmonic Motion is introduced and demonstrated using a horizontal mass-spring system. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 A horizontal mass-spring system 0:29 Equilibrium position and positions 1, 2, and 3 2:05 Demonstrating simple harmonic motion 2:53 Requirements for simple harmonic motion Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Next Video: Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions Multilingual? Please help translate Flipping Physics videos! Previous Video: Impulse for Two Objects being Attracted to One Another Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System
-
- demonstrate
- restoring force
- (and 5 more)
-
Name: The Human Spine acts like a Compression Spring Category: Oscillations Date Added: 2018-04-02 Submitter: Flipping Physics A horizontal spring is attached to a cord, the cord goes over a pulley, and a 0.025 kg mass is attached to the cord. If the spring is stretched by 0.045 m, what is the spring constant of the spring? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:39 Solving the problem 2:26 Comparing to a vertical spring 3:30 Expansion vs. compression springs 3:56 The human spine acts like a compression spring Next Video: You Can't Run From Momentum! (a momentum introduction) Multilingual? Please help translate Flipping Physics videos! Previous Video: Determining the Spring Constant, k, with a Vertically Hanging Mass Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. The Human Spine acts like a Compression Spring
-
- hookes law
- demonstration
- (and 9 more)
-
Name: Determining the Spring Constant, k, with a Vertically Hanging Mass Category: Oscillations Date Added: 2018-04-02 Submitter: Flipping Physics A vertically hanging spring with a natural length of 5.4 cm is extended to a length of 11.4 cm when 25 grams is suspended from it. What is the spring constant of the spring? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 0:54 The free body diagram 1:53 Understanding the direction of the Spring Force 2:46 Summing the forces 3:32 Common misconception when using Hooke’s Law equation 5:00 Using the magnitude of the displacement from equilibrium Next Video: The Human Spine acts like a Compression Spring Multilingual? Please help translate Flipping Physics videos! Previous Video: Hooke's Law Introduction - Force of a Spring Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Determining the Spring Constant, k, with a Vertically Hanging Mass
-
- hookes law
- demonstrate
- (and 7 more)
-
Name: Hooke's Law Introduction - Force of a Spring Category: Oscillations Date Added: 2018-04-02 Submitter: Flipping Physics Hooke’s law is demonstrated and graphed. Spring constant, displacement from equilibrium position, and restoring force are defined and demonstrated. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Robert Hooke 0:46 Compressing a spring using a force sensor 1:33 Graphing force as a function of position 2:14 Hooke’s Law 3:07 Demonstrating displacement from rest position 5:20 Demonstrating the spring constant 6:15 What the negative in Hooke’s Law means 7:02 The spring constant is positive 7:54 The restoring force 8:33 Elastic limit Next Video: Determining the Spring Constant, k, with a Vertically Hanging Mass Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine - Example Problem Please support me on Patreon! Thank you to Aarti Sangwan, Jonathan Everett, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Hooke's Law Introduction - Force of a Spring
-
- restoring force
- equilibrium position
- (and 10 more)
-
Name: Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond) Category: Circular Motion & Gravity Date Added: 2018-03-11 Submitter: Flipping Physics Calculus is used to determine the force of gravity and the gravitational potential energy between an object and a planet, inside and outside the planet. Equations and graphs are determined and discussed. Want Lecture Notes? This is an AP Physics C: Mechanics topic. Content Times: 0:01 Basic universal gravitation equations 1:07 Outside the planet 1:42 Assumptions for inside the planet 3:38 Deriving mass inside r 4:23 Determining the equation for force of gravity inside the planet 5:24 Graphing the force of gravity inside the planet 5:59 Determining the equation for universal gravitational potential energy inside the planet 7:37 Solving for the constant C 8:49 The equation for universal gravitational potential energy inside the planet 9:41 Looking over the graphs Multilingual? Please help translate Flipping Physics videos! Previous Video: Impulse for Two Objects being Attracted to One Another Please support me on Patreon! Thank you to Sawdog, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond)
-
Name: Impulse for Two Objects being Attracted to One Another Category: Circular Motion & Gravity Date Added: 2018-03-11 Submitter: Flipping Physics In a universe devoid of anything else, two identical spheres of mass, m, and radius, R, are released from rest when they have a distance between their centers of mass of X. Find the magnitude of the impulse delivered to each sphere until just before they make contact. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 1:26 Applicable impulse equations 2:13 Conservation of mechanical energy 3:28 Showing a common mistake 4:00 Solving the problem Next Video: Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond) Multilingual? Please help translate Flipping Physics videos! Previous Video: Mechanical Energy of a Satellite in Circular Orbit Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, Jonathan Everett, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Impulse for Two Objects being Attracted to One Another
-
- universal gravitational potential energy
- kinetic energy
- (and 4 more)
-
Name: Mechanical Energy of a Satellite in Circular Orbit Category: Circular Motion & Gravity Date Added: 2018-03-04 Submitter: Flipping Physics The mechanical energy of a satellite in circular orbit is solved for in terms of universal gravitational potential energy. And the velocity of the satellite is compared to escape velocity. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 Types of mechanical energy of a satellite 1:21 Solving for the velocity of a satellite in circular orbit 2:34 Solving for the mechanical energy of a satellite 3:31 Comparing satellite velocity to escape velocity Next Video: Impulse for Two Objects being Attracted to One Another Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving Escape Velocity of Planet Earth Please support me on Patreon! Thank you to Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Mechanical Energy of a Satellite in Circular Orbit
-
- circular orbit
- escape velocity
- (and 9 more)
-
Name: Deriving Escape Velocity of Planet Earth Category: Circular Motion & Gravity Date Added: 2018-02-25 Submitter: Flipping Physics Escape velocity is defined and illustrated. The escape velocity of planet Earth is derived. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 0:42 Defining escape velocity 1:43 Conservation of mechanical energy 3:22 Initial and final mechanical energies 5:38 The escape velocity of planet Earth 6:19 Relating this to binding energy Next Video: Mechanical Energy of a Satellite in Circular Orbit Multilingual? Please help translate Flipping Physics videos! Previous Video: Deriving the Binding Energy of a Planet Please support me on Patreon! Thank you to Dan Burns, Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Deriving Escape Velocity of Planet Earth
-
- derive
- universal gravitational potential energy
- (and 4 more)
-
Name: Deriving the Binding Energy of a Planet Category: Circular Motion & Gravity Date Added: 2018-02-18 Submitter: Flipping Physics Binding energy of a planet is defined and derived. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:21 Defining binding energy 0:48 Proving change in gravitational potential energy equals work done by force applied 3:03 Universal gravitational potential energy 3:39 The binding energy of a planet 5:16 An alternate way of solving this problem Next Video: Deriving Escape Velocity of Planet Earth Multilingual? Please help translate Flipping Physics videos! Previous Video: Universal Gravitational Potential Energy Introduction Please support me on Patreon! Thank you to Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Deriving the Binding Energy of a Planet
-
- planet
- non-constant
- (and 5 more)
-
Name: Universal Gravitational Potential Energy Introduction Category: Circular Motion & Gravity Date Added: 2018-02-12 Submitter: Flipping Physics Universal Gravitational Potential Energy is introduced and graphed. It is compared to the force of gravity. And the “zero line” is defined. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:11 “Normal” gravitational potential energy 1:33 Gravitational fields 2:22 Universal Gravitational Potential Energy Equation 3:07 Comparing gravitational potential energy to force of gravity 4:12 Graphing Universal Gravitational Potential Energy 5:35 The “zero line” for universal gravitational potential energy 6:05 Can universal gravitational potential energy ever be positive? 6:49 Gravitational potential energy at the surface of the Earth 7:57 Three things to be careful of. Next Video: Deriving the Binding Energy of a Planet Multilingual? Please help translate Flipping Physics videos! Previous Video: Gravitational Field Introduction Please support me on Patreon! Thank you to Dan Burns, Jonathan Everett, Christopher Becke, Sawdog, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Universal Gravitational Potential Energy Introduction
-
- gravitational field lines
- field lines
- (and 7 more)
-
Name: Gravitational Field Introduction Category: Circular Motion & Gravity Date Added: 2018-02-05 Submitter: Flipping Physics The gravitational field is introduced and illustrated. For a constant field and a non-constant field around a spherical object. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 The two force of gravity equations 0:55 The constant gravitational field equation 2:25 Gravitational Field Lines 3:16 What is a gravitational field? 4:33 The gravitational field equation around a spherical object 5:48 Drawing the field lines around a spherical object 7:02 Are gravitational field lines real? Next Video: Universal Gravitational Potential Energy Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Number of g's or g-Forces Introduction Please support me on Patreon! Thank you to Tony Dunn, Christopher Becke and Jonathan Everett for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Gravitational Field Introduction
-
Name: Number of g's or g-Forces Introduction Category: Circular Motion & Gravity Date Added: 2018-01-28 Submitter: Flipping Physics Description and examples of g-forces or number of g’s. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 Equations for g-forces or number of g’s 1:08 Number of g’s when at rest on the surface of the Earth 2:43 Number of g’s when in orbit 3:33 Apparent Weightlessness 4:20 How to experience apparent weightlessness in a car 5:22 Apparent weightlessness examples 6:05 Describing number of g’s again 7:08 More examples of number of g’s Next Video: Gravitational Field Introduction Multilingual? Please help translate Flipping Physics videos! Previous Video: Apparent Weightlessness Introduction Please support me on Patreon! Thank you to Sawdog, Christopher Becke, Frank Geshwind and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Picture and Video credits: NASA Logo https://www.nasa.gov/sites/default/files/thumbnails/image/nasa-logo-web-rgb.png Liquid Ping Pong in Space - RED 4K https://www.youtube.com/watch?v=TLbhrMCM4_0 Side view of plane in field - https://commons.wikimedia.org/wiki/File:Airplanes_-_Types_-_Kirkham_Triplane_manufactured_by_the_Curtiss_Engineering_Corp.,_Garden_City,_Long_Island._Side_view_of_plane_in_field_-_NARA_-_17341451.jpg Tesla-Roadster-2020-1280-01 - https://www.netcarshow.com/tesla/2020-roadster/1280x960/wallpaper_01.htm STS120LaunchHiRes-edit1 - https://commons.wikimedia.org/wiki/File:STS120LaunchHiRes-edit1.jpg Soyuz_TMA-13_Edit - https://commons.wikimedia.org/wiki/File:Soyuz_TMA-13_Edit.jpg Hong Kong skyscrapers in a night of typhoon.jpg - https://upload.wikimedia.org/wikipedia/commons/8/8d/Hong_Kong_skyscrapers_in_a_night_of_typhoon.jpg Number of g's or g-Forces Introduction
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.