# Fun With Physics

• entries
31
30
• views
4,206

## Tuba physics

Physics plays a massive part in music, whether instrumental or vocal, but physicists and musicians rarely realize the depth of the relationship between the two. As a tubist and a physics student, I find how closely intertwined physics and music are to be intriguing. Most people know that the tuba is an incredibly low instrument, second only to the contrabass saxophone, which is rarely found in a concert band anyway, but when asked why it is, the most common answer is because its big. This answer

My family and I were making bread the other night and my mother had to teach us how a flat piece of dough could turn into a delicious, golden brown loaf. All she knew was that heat made the dough rise, but there is so much more physics involved in making bread rise. In terms of energy, as heat from the oven goes into the dough, the heat energy is turned into mechanical energy in the molecules of the bread, mostly in the form of kinetic energy. This conversion from heat energy to kinetic energy c

## Walking the plank

In a show I recently stumbled upon, a man was told to walk the plank. This plank was nailed down, but considering a plank that wasn't nailed down, one could find the length at which to extend the plank off the ship so that it wouldn't tip over when a person with a known mass walked across it. To calculate this, one has to think about the torques applied to the plank. The torques applied, assuming the person is at the end of the plank and the plank has a uniform mass, is only the torque applied b

## Pancakes

My sister Abby loves to make pancakes for breakfast. She makes three small pancakes at a time using one pan. How does this cook all of the pancakes evenly? This is where physics comes into the equation. The flame is concentrated in the middle of the pan, so wouldn't that be the only place where the pancakes would be able to be cooked? One would assume so, but due to energy and particle movement, the entire pan is able to cook a pancake, even though the flame is not directly under that spot. The

## Partial Derivatives

A partial derivative uses this nice formula. (f)/(x), where f:R^2->R is lim h->0 (f(x+h,y)-f(x,y))/h. Physics is everywhere, waiting, watching.

The speed of light is known as 300,000 km/s and we leave it at that. But this speed is only the speed of light through a vacuum and light doesn't always travel in a vacuum. The slowest recorded speed of light is actually 17 m/s, a speed easily attainable by a car. So what happens then if particles can travel faster than light? Well in many nuclear reactors, this is what happens. Particles travel at a speed greater than the speed of light in that specific atmosphere. When this happens an emission

## Homer Simpson

In the greatest comedic film ever created, Homer Simpson attempts to ride a motorcycle around the inside of a dome. He accomplishes this feat in order to throw a bomb out of the inside of the dome. Not only is this the coolest stunt ever pulled in any movie in the history of film, the physics behind this accomplishment is elegant. In previous attempts when Homer failed, he drove too slowly and so he would fall when he got to the top of the dome. Lisa knew about physics, however, and told Homer t

## Mass CAN Change?

In high school physics we've always been told that test will try to trick you. They'll ask if a 10kg person goes from the earth to the moon how will their mass change. And the answer is always it doesn't. Mass doesn't change, mass doesn't change, mass doesn't change. It's been hammered into our brains. But it's a lie. So the speed of light in a vacuum is 300,000 km/s. This is the fastest speed any object in the universe can travel at. So what happens if you try to accelerate an object going the

## Drifting

By far the coolest thing you could do with a car is drift, but most people don't know the specifics behind drifting and how much physics is embedded in drifting. When someone drifts, they turn the car abruptly and then turn the wheel in the opposite direction they want to turn. This action, however, however seems counterproductive. Why would turning the opposite direction move the car in the intended direction? To answer this question, you need to know the nature of friction and Newton's laws. W

## Sleding

Many people spend the winter practicing thrilling winter sports such as skiing or snowboarding, but I like to stick with simplicity. Sleding requires very limited skill to still have the thrill of gliding down a hill. There is also a lot of physics behind sleding, specifically how to turn on a sled. People seem to automatically know that they should lean to a side to turn to that side on a sled, but why? It's all about the normal force. The sled glides down the hill because of the force of gravi

## Time Travel

Many people think time travel is absolutely ludicrous, but one has to consider what kind of time travel they are referring to. To travel back in time is ludicrous, because if this were ever to become possible, there would have been discovered evidence of time travelers from the future that came to our time. Time travel according to Einstein's theory of Relativity, however, is not only plausible, but true. According to Einstein, as one increases the speed at which they travel, the rate of change

## Why is the sun hot?

I was recently reading a on a physics website (http://www.telegraph.co.uk/news/science/) an article revealing the actual reason why the sun is hot. Most people, like I, would think it is because of the energy dissipated from the collision of billions and billions of hydrogen and helium atoms. It seems like straight forward mechanics, the particles collide and dissipate a certain amount of heat energy due to the collision and the addition of the billions of collisions that happen every second mak

## Cereal

You may have wondered why it seems that all of your cereal clumps together in the middle of the bowl, even when you only have a few bits left to eat. The fact that cereal accumulates toward the center is due to something scientists have called "The Cheerios Effect." In 2005, the effect was mathematically proven. The surface tension between the milk and the bowl causes the milks surface to cave in slightly toward the middle of the bowl. Similar to the cohesive and adhesive properties of water, th

## Slipping in the Rain

I was recently driving on a day when it was raining fairly aggressively. I was driving fine when all of a sudden a car headed the opposite direction from me slid right in front of me almost hitting my car. After assessing the accident and making sure everyone was okay I began to think about what made the car slide all the way to the opposite side of the road. As the pavement was wet, the coefficient of friction between the car and the road was decreased. This made it so the traction in his tires

## An Observer Can Change Everything

Recently in our physics class we were discussing the theory of relativity and how it works in nature. Without learning the math behind the theory yet, the theory is incredibly confusing, but it reminded me of a video we watched last year in my physics class that discussed how observers can change the way particles act. In a certain experiment, physicists shot electrons through a small slit to see the nature of an electron, whether it would act as a wave or as a particle. Incredibly, even though

## Rotational motion (don't forget friction)

In a recent lab done in my physics c class, my group was experimentally determining the moment of inertia of six different objects. We set up a ramp for the objects to roll down at an angle of 3.325 degrees. We rolled the objects down the ramp, recorded the time for each object and then found each objects linear acceleration, radius, angular acceleration, mass, net torque and finally moment of inertia. When we checked our answers with our teacher they were horribly wrong, like an average of 200%

Black holes are often thought of as dark holes sucking matter in towards them by there massive amount of gravitational force. Interestingly enough, however, black holes are anything but black. Black holes might be dark, but they glow. It is well known that black holes decay until they don't have enough energy to sustain their mass, thereby not allowing them to exist any longer. But what does this loss of energy turn into? The slight glow in black holes. This slight glow is due to "Hawking Radiat

## Returning a serve

In my limited time playing tennis for school and ping pong in my free time, I've learned how to properly return a fast serve. I would always see a quick serve coming at me and be tempted to swing hard back at it, but that would always end in the ball soaring off to either side. My coach instead told me to just hold my racket still and steady and let the ball bounce off of it. This technique has a lot of physics behind it that makes sense. Think of a ball being bounced on the floor. The floor doe

I often play pickup basketball with my brothers, the teams usually split up as me and Paul vs Nathan and Dave. Paul is garbage, however his terrible form and his "signature move" has a lot of physics involved with it. Paul believes the greatest shot is one where he dribbles along the three point arc and chucks up a shot one handed while falling backward. He believes the best way to make this shot is by aiming for the white square on the backboard. This is surprisingly not the best tactic however

## High Notes on the Tuba

As an experienced tubist, I have been practicing bettering the quality of my higher range for years now, but it is still a challenge. The challenging aspect of playing clear high notes through a tuba can be attributed to physics. The higher the pitch, the higher the frequency of the sound waves. To increase the frequency of the sound waves, one must increase the speed of the air through the tuba. To do so, you increase the pressure of the air in the mouthpiece by pressing your lips close togethe

## Is Gravity an Illusion?

From the earliest discoveries of gravity and when students first learn about gravity, they are told it's a force. The force of gravity is equal to mass times the acceleration due to gravity or Fg=(m1m2/r^2. That is just a fact. Or is it? Gravitational forces are actually much more interesting than just the relationship between one mass and another. Gravity is the act of changing space-time. Gravity causes space-time to curve into a bowl like shape pulling masses into the center of it. As a plane

## Bowling

When looking at the sport of bowling, one can easily say the velocity at which the ball is thrown and its mass are the factors in whether or not the pins fall down, but which one matters more, or do they have the same amount of importance? When looking at this question, momentum has to be focused on. The momentum of the ball as it is thrown is what causes the pins to fall down. As momentum is conserved as each pin hits another, the initial momentum of the ball is what matters most. But what is m

I grew up in a large family with 6 siblings. As a triplet and having four older siblings,  I have never really been on my own in any activity. My family is extremely close and most of the activities that I do outside of school, such as soccer, singing, playing the tuba, and acting, I do with at least one of my siblings. I am a captain on the varsity soccer team in high school and soccer is one of my greatest passions. I am studying physics this year because I loved what I learned last year and I