Jump to content


  • Content Count

  • Joined

  • Last visited

  • Days Won


Blog Entries posted by FizziksGuy

  1. FizziksGuy
    Time for a little mental health rant…
    We all want our children to be the best they can be, to feel good about themselves, and to reach their potential. Part of this process, however, involves learning to fail productively — understanding and experiencing what it’s like to fall short, knowing that sick feeling in your gut is uncomfortable but necessary, and disliking that feeling enough to do something about it and try again.
    I sure hope I’m wrong, but I feel like many of the changes I’m seeing in the way we as a society deal with children is sending the wrong message. These changes are made with the best of intentions — we don’t want anyone to feel left out, and we don’t want children to experience the pain of failure — but we as adults who know better need to recognize that these uncomfortable experiences are important to building up confidence, self esteem, and independence. Kudos that aren’t truly earned don’t teach a child to work hard, they teach a child that showing up is enough.
    I’m not saying little ones need to be beaten into submission, or that I should always crush my kid in a game of Connect Four — but I do think they need to learn that they can’t win every time, otherwise there’s no impetus to improve. They won’t always get picked first to be on a team, there will be days when they are left out of activities their friends get to experience, and there will be events when they’ll leave the field and not be the winner of the event. This is OK, it’s an opportunity learn the importance of giving your all, of preparing as fully as possible, and the value of sportsmanship, both on top and at the bottom of the podium.
    I think it’s also important for our kids to understand what makes us proud and what is disappointing. Sportsmanship is important, but it’s also important to realize that decisions leading up to events contribute to the success or failure of that event. As a teacher I observe students who work their tail off and struggle for a middling grade… and I try to instill a sense of pride in that work and that grade. I also have students who slack off and are naturally talented enough to earn A’s. I try to explain to these students that they are not reaching their potential, and I don’t find that acceptable. There will be times when our kids may try and try and try, but never reach the level of success that they desire. Recently I’ve dealt with repeated instances of academic dishonesty, from students who are taking shortcuts in their classes, and aren’t recognizing the connection between their integrity, work ethic, and results.
    True self esteem and confidence comes from understanding that you can go to bed every night with no regrets, having given your all, not from an external source such as a trophy or a piece of paper with a letter on it. And not meeting every goal just tells you that you’ve set aggressive goals. If you reach every one of your goals, you’re not reaching high enough.
    I don’t think it’s valuable to get into specifics, as you can find “opportunity for improvement” in so many of the things we do and say with our kids, from the toddlers to the older young-at-heart — in our homes, in our schools, and in our activities. But I would ask, if some of this does resonate with you, to take a step back and look at what changes you can make, or ways you can support and reinforce those who are instilling these old-fashioned values. And don’t be afraid to speak up every now and then and question what you see occurring.
    Just because someone thinks it’ll make everyone feel better, doesn’t mean it’s a good idea. And just like our mothers taught us, popular opinion doesn’t mean it’s the right opinion. Remember the old adage “if all your friends jumped off a bridge would you jump off too?” It’s time for all of us to start thinking for ourselves.
    The post Failure is Necessary for Growth appeared first on Physics In Flux.

  2. FizziksGuy
    So, it’s been a few years since I’ve detailed how I make my screencasts, and my workflow and equipment have evolved as I’ve added a few bells and whistles in an attempt to make the screencasts look a touch more professional (and more fun).  Some things have stayed the same, and others, well, not so much.  Here’s the basic workflow.
    The Computer
    27″ iMacI’m still working on a Mac platform, doing most of my work on a 27-inch 2013-vintage iMac.  I try to keep up to date with the latest version of the operating system, which is currently OS X Sierra.  The iMac includes the higher-end graphics card (NVIDIA GeForce GTX 780M 4096 MB), has an i7 processor, and I’ve installed 32 GB of RAM.  Typically when I purchase a computer I shoot for a five to six year productive life span, at which point I’ll upgrade to a newer model.  This has worked pretty well for me with respect to my Mac laptops (a MacBook Pro), as the last one was in service for about six years, but I’m anticipating this iMac may continue well past that mark.  It still looks beautiful, runs quickly, and with the amount of RAM and the built-in Fusion Drive, its performance doesn’t appear to be in any danger of slowing down in the near future.
    Pen Displays
    Wacom Cintiq 22HDAttached to the iMac I have a Wacom Cintiq 22HD pen display unit, which is basically an external monitor that I can “write on” with a special pen, allowing me to annotate the screen as I talk through the video.  I’ve previously used a Wacom DTU-1631, and am looking forward to trying out the newly-released Wacom Cintiq Pro 16 with a USB-C enabled MacBook Pro.  Though the Wacom pen displays are a very significant investment, I’ve been very impressed with their quality and longevity.  The DTU-1631 has lasted five years in the classroom with heavy daily use, and the Cintiq 22HD is just shy of five years of service (though a much lighter workload) and could easily pass for brand new.  These monitors also hold their value extremely well over time.
    Audio & Video
    Blue Yeti MicrophoneI’ve gotten a ton of mileage out of my Blue Yeti USB microphone… I’ve tried a number of other mics, including lapel mics, and microphones that cost more than three or four Blue Yeti’s, but I haven’t found anything that compares to the quality of the Blue Yeti, especially at its very reasonable price point.  If you want to upgrade your audio from the built-in microphones, this is a very solid choice, and another piece of electronics that has held up well for more than five years of service.
    Canon Vixia HF G20I’ve put together a small office in my basement to allow for a fairly quick and seamless transition to video creation mode, which includes a foam green screen (and stand).  Especially if you’re just getting started, something as simple as a green flannel blanket can work, though I have to admit, the foam green screen has held up extremely well these past few years (even with the dog sleeping on the portion that sits on the floor at least daily).  They sell rather expensive lighting clips to hold the green screen to the stand, but I found quality clips at a much more reasonable price at the local hardware store.
    Genaray SpectroLEDFor illumination, I use a couple of super-cheap reflector work lights coupled with a Utilitech Pro floor LED and a Genaray SpectroLED SP-E-240D mounted on the ceiling.  With a little bit of playing, I can obtain pretty reasonable uniform green screen illumination.  I also use a couple of desktop clip-on lamps to illuminate the foreground (i.e. — my face) in the videos.
    To record my face in the videos, I’m using a Canon Vixia HF G20, saving the digital video file onto an SD card.  Most any digital camcorder or webcam can do the job, however.  While the Canon is recording my face, I’m separately using the iMac and Telestream’s Screenflow 6 (Telestream JUST released Screenflow 7, but I haven’t tried it out yet) to record the Wacom Cintiq screen, as well as recording the input from the Blue Yeti microphone.
    Prior to any recording, however, I create my “slides” for the screencasts using Apple’s Keynote software, and export those slides as a PDF.  I then open the PDF using Zengobi’s Curio software, which is the software actively running on the Wacom screen that I use to annotate the slides.  If you haven’t tried it out, Curio is a pretty amazing piece of software that allows you to do so much more than just write on PDF slides…  if you have a Mac, it’s worth checking out for a variety of purposes!
    So, the workflow.  With everything set up, I have Screenflow 6 start recording the Wacom screen while recording the Blue Yeti mic, and simultaneously I start up the Canon video camera.  Once I’ve gone through the lesson, I stop Screenflow from recording and stop the Canon video camera.  I should now have an SD card that contains the digital video file of my face (with sound recorded from the Canon’s rather poor microphone), and a Screenflow 6 file that has video from the Wacom screen coupled with the Blue Yeti-recorded sound.
    Now it’s time to put the video all together.  First I export the digital video file from Screenflow 6, taking care to export at 29.97 fps and not 30 fps so that it will match up to the Canon digital video file.  Then, using Final Cut Pro on the Mac (coupled with the Motion and Compressor add-ons), I create a project and import both the recorded screen video file and the video camera file.  Using Final Cut, I create a combined clip from these two files and have Final Cut Pro sync them up based on the audio (although the sound from the Canon camera is poor, it’s good enough to sync the clips together).  Next, I mute the sound from the Canon camera, so that I now have my recorded screen video below my “live action” video, but using only the sound from the recorded video screen, which was recorded with the Blue Yeti mic.
    Chroma Key EffectNext it’s time to edit.  First step is to take care of the green screen effect (formally known as chroma key), which Final Cut Pro does quite easily.  I remove the green color from the “live action” file using the “Keyer” effect, and tweak it as needed to get the desired result.  I then shrink the clip down and position it where I want, so that I have the live video taking up just a small portion of the screen, the background green from the video shows as transparent, and what shows through from underneath is the recorded video from the Wacom screen.
    The hard part’s done.  Final steps now involve fixing any audio issues, clip editing if necessary, adding any titles, and appending on the opening and closing video sequences, which were created using Adobe Premiere Pro, After Effects, and Audition from Adobe Creative Cloud.  Once I have the video looking the way I want in Final Cut Pro, I use Compressor to export it in multiple formats — high definition video for YouTube, and an APlusPhysics-specific size and quality for viewing directly from the APlusPhysics site.
    Next Steps
    Moving forward, I would really like to spend some time working with my old iPad to see if I can re-purpose it for use as a teleprompter.  I tend to spend a lot of time up front planning my videos, but still have yet to come up with a slick, efficient way of presenting notes to myself while I’m making a video.  I have to believe there’s a reasonable way to have my notes show up on my iPad and use some sort of remote (perhaps my phone?) to scroll through PDF notes on my iPad as necessary.  Currently I tend to tape my paper notes to the bottom of the camera, which is chock-full of problems, messiness, and opportunity for improvement.
    Back to Reality
    If it sounds like there’s quite a bit of work involved, you’re not wrong, but don’t think you have to go to anywhere near this level of complexity or expense to make quality screencasts.  My workflow has evolved over the years as I’ve tinkered and gone through a length set of try/fail sequences to learn what works for me and provides the level of quality I’m after.  Much of what I do can be accomplished in a similar manner using fairly basic tools — Techsmith’s Camtasia software coupled with a Webcam, a USB lapel mic, and most any digitizing tablet will get you pretty solid results without a huge investment.
    Even though this article is a technical how-to / what do I use, I’d still like to end with two bits of advice I’ve learned from doing things the hard way more times than I can count.
    First, and foremost, a flipped classroom is NOT about the videos, it is about building more in-class time for active learning strategies such as hands-on activities, group problem solving, deep-dives into a topic, discussions, etc.  The videos themselves are such a tiny part of the whole equation, and are primarily a means to create more available class time. Second, though it can be fun to doctor-up your videos and add all sorts of bells and whistles, realize that these embellishments and investments of time and resources have extremely minimal payback in the form of student learning and performance.  If you’re interested in doing these things, make sure you’re doing them because you want to and think it’s going to be fun, but don’t expect to see any sort of substantial learning improvement with higher quality videos (which brings me back to item one… it’s not about the videos!) Useful References
    Video: Developing a Successful Flipped Classroom Video Series: How to Get the Most Out of Studying (Dr. Chew) The post Creating Screencasts (Mac) – 2017 Update #edtech #flipclass appeared first on Physics In Flux.

  3. FizziksGuy
    You may have noticed it’s been a LONG time since I’ve updated this physics education blog.  More likely you haven’t noticed, because it’s been a LONG time since I’ve updated this blog.  This hasn’t been due to a lack of topics to write about, but rather, it’s been a conscious choice to plow full steam ahead on a project that began in June of 2013 and that I’m thrilled to announce is now available, The AP Physics C Companion: Mechanics.  But first, some background.
    Traditional AP Physics C
    As a teacher of calculus based physics (AP Physics C – Mechanics and AP Physics C – Electricity and Magnetism), I’m faced with a very unique challenge in those courses.  I typically enjoy classes of bright, motivated students who are preparing for careers in engineering, science, medicine, and other technically challenging fields.  And I love teaching the content of these courses — the level of technical challenge keeps me motivated, and I love the highly mathematical nature of the course.
    In teaching the class, however, what I found is a very aggressive schedule to fit both courses into the school year, and my students are co-enrolled in calculus (which means they typically need to solve calculus problems in physics before they’ve been introduced to the calculus in their mathematics classes).  Further, teaching in a traditional style, I found that most topics fit fairly well into our 42-minute periods.  Students come in to class, begin with a warm-up question tied to the previous day’s topic, which we spend a few minutes reviewing, then I have time to present a single topic with an example or two each day.  If we don’t take any breaks, and throw in a quiz or test every couple weeks, as well as some fairly straightforward lab activities, we JUST barely get through all of our material in time for the May AP exams.
    What I especially enjoy about this class and this method of teaching, however, is the face-to-face time with the kids during the daily lessons.  Class sizes for AP Physics C is typically small enough that we have a very informal style that is warm and inviting, yet challenging for all.  The students enjoy the class, taking notes from their seats each day, and doing book problems and old AP problems for homework in the evenings.  And our AP scores each year are solid.
    In September of 2011, however, I decided to try something different.  I wanted to get away from the teacher-centric model, as I realized that I was the hardest working person in the classroom.  This contrasted with the best teaching advice I ever received, when our assistant principal and my mentor explained that I should strive to “Look like the laziest teacher in the building while the students are in the classroom, and the hardest working teacher in the building the moment they leave.”  What he meant was students should be doing the work in the classroom, especially as I continuously espoused my belief that physics is something you do, not something you know.  Although the students were doing OK in their passive roles as notetakers, this was a credit to the strength of these students, not my teaching.
    A New AP Physics C Methodology
    Instead, I began to imagine a classroom in which students directed their own learning, building lifelong learning skills that would serve them well outside the narrow discipline of future physics courses.  With the blessings of our administration, I undertook a giant experiment in the classroom.  We went through the year with the goal of having zero teacher lectures.  Instead, I completely “flipped” the classroom.  Students were expected to watch video mini-lessons on topics outside of class, as well as read the textbook and take notes, saving classroom time for group discussions and problem solving, hands-on lab activities, and deeper dives into topics of interest.
    I ended up going back to traditional lectures on two topics — Gauss’s Law and the Biot-Savart Law, but for the most part the class ran independently.  I built up “packets” of assignments, practice problems, labs and activities for each unit, and students worked at their own pace (within reason) through each unit.  Unit exams were given when students said they were ready, with multiple re-take opportunities.  This evolved into a self-paced course, and at the end of the year, I found AP scores were significantly higher than in past years, which in retrospect shouldn’t have been surprising.  Teaching in this more hands-off manner is very uncomfortable, however.  I “feel” like I’m doing a great job when I’m working hard, presenting great lectures, and interacting with the students.  Stepping back and watching the students work, only getting involved to ask the occasional question or provide some basic clarification and support is extremely challenging.  Given the results, though, I tried it again the following year.  Same result!
    These classes were regularly polled for feedback on the course.  General observations were that many students felt more intimidated and lost at the beginning of the course.  As well, there were several points throughout the year in which the students felt quite frustrated.  Polls at the end of the year, however, indicated students felt very confident in their self-teaching abilities, their ability to work through challenges they initially thought impossible, and their comfort level with their preparation for future studies.  The most common opportunity they identified for improvement — learning how to read the textbook.
    In an effort to address this, I’ve implemented a variety of changes in my classroom.  First off, we take some time at the beginning of the year and again after mid-terms to talk about and practice strategies for reading a technical text.  We also take some time to talk about how to actively use the video lessons and example problems so that study time is efficient and productive.
    The AP Physics C Companion: Mechanics

    Finally, I started work on a “companion” text to the AP Physics C curriculum, focused on distilling down the key points from the text and illustrating them with a variety of applications.  Not really a review book (though it could be used in that sense), but rather a cleaned-up version of instructor notes for the course that could be applicable to any calculus-based mechanics course.  A large focus of the book is trading off technical complexity for illustrated application of concepts, including justifications for problem solving steps in the problems themselves, and well-documented problem solutions.
    I’ve been using the notes and draft chapters of this book for several years in my classes, which has allowed me a “test run” of various sections and the opportunity to see what works with students, and what needs further revision.  The final result, I’m excited to say, is now available as “The AP Physics C Companion: Mechanics.”  It will first be available in black and white print editions from APlusPhysics.com and Amazon, as well as a full-color PDF edition on APlusPhysics.com.  Shortly thereafter, print editions (both color and black and white) will be available from any retailer, including Amazon and Barnes and Noble.  Finally, bulk purchases will be available directly from sales@sillybeagle.com (Silly Beagle Productions) at substantial discounts.
    Where’s the E&M Book?
    I’ve already been asked repeatedly if there’s an E&M version planned.  The answer is rather convoluted, however.  The E&M version is half done — the draft is complete as part of my class work and has been for more than a year.  I haven’t typeset it yet, however (probably a 6-12 month project), or worked on the graphics for a few reasons.  First, it is a huge investment of time to do so, which puts other projects on the back burner.  Second, the market for such a book could be pretty small.  As only 27,000 students took the AP Physics C: E&M exam last year, that’s a very limited market to cater to.  Though the book would be appropriate for an introductory calculus-based E&M course, a very significant portion of students taking the E&M exam would have to purchase and use the book in order to recuperate the costs involved in putting out the book (which are substantial).  As most any science author will tell you, there’s not much profit to be made in writing these types of books, and margins are mighty slim.  It’s a labor of love because you want to help students (yours and others).  I’m already pushing the limits of ‘wise decisions’ in marketing a book to the AP-C Mechanics market (53K test takers last year), and hoping it at least breaks even.
    Before making any commitments to an E&M version, I want to obtain feedback from the mechanics version — are students and instructors finding it helpful, what is a reasonable percentage of the market to anticipate, would it at least break even, and how is the new format received (fewer pages, larger format and type, color vs. B&W, etc.)  Given all that, I imagine it’s probably likely at some point I’ll get to work on it (after every book I tend to think I’m done, then eventually change my mind and start on another one).  However, it feels good to “fool myself” for awhile and pretend I’m done while I work on updating the APlusPhysics site, continue work on instructional videos, and perhaps get to bed a little earlier in the evenings.
    For now, however, I’m excited to announce the release of The AP Physics C Companion: Mechanics.  Hope you enjoy it as much as I enjoyed putting it together!
    *AP and Advanced Placement Program are registered trademarks of the College Board, which does not sponsor or endorse this product.
    The post New AP Physics C Mechanics Book Release appeared first on Physics In Flux.

  4. FizziksGuy
    A few years ago I put together a review/guide book for the AP Physics 1 course the College Board recently released.  The project was started around 2009, but took several years to complete as the scope and direction of the College Board’s AP Physics 1 course continued to evolve, as more and more information about the course was released, modified, re-released, etc.  It has done fairly well, and after the release of the first exam, a second edition was released, which included minor edits, modifications, and rephrasings in the main text, but also incorporated a significant number of more challenging questions in the appendix, though many of them remain numerically focused.
    The Goal
    The goal of this book was never to be a “sole source to success in AP Physics 1.”  The AP Physics 1 course is a VERY challenging introductory physics course, which requires a strong foundation in fundamental physics principles, logical problem solving, and transfer of basic concepts to new and unique situations.  In my humble opinion, building skills of this sort requires more than a review book.  It requires more than videos.  It requires extensive hands-on work with applications utilizing the concepts, individual and group problem solving, debate, discussion, and research.  It’s a very high level of expectation for what has been largely touted as an introductory physics course.  For many, AP Physics 1 will be the only physics course they take.  I am concerned that the course offers only a subset of what I would like to see in a general survey course of physics.  Though it covers basic circuits, it is light on electrostatics.  Though it covers mechanical waves, it doesn’t touch electromagnetic waves, optics, or modern physics.  If these were the only topics my students were introduced to in their only physics course, I feel I would be doing them a disservice, and not providing them an opportunity to see more of the breadth and beauty of the field I so love and enjoy.
    The AP1 Essentials book, as written, was designed as the book I’d want to use with my students.  The book which I’d ask them to read outside of class (coupled with video mini-lessons) so that when they arrived in class, they’d have some level of exposure to the basic material allowing us to use our class time more efficiently for those deeper explorations into the topics under study.
    Public Response
    Public response to the book has been strongly bimodal.  Overall reviews are very positive (4.5/5 stars on Amazon.com), with the primary criticisms and 1-star reviews focusing on the book utilizing too much numerical problem solving, and focusing on basic problems that are “too easy” compared to the actual AP 1 test questions.  These are VERY valid criticisms, and I agree with them.  However, in the context in which the book is intended to be used, these criticisms are inconsistent with the book’s purpose.
    AP Physics 1 Concerns
    A grader of this year’s AP Physics 1 exam recently stated that he was surprised to learn that “not including the date, birth date and school code, a student could have made a perfect score on the whole exam without writing down a single number.”  I find this extremely troubling.  I am in favor of questions that test understanding, but I also believe that many physics students who go on to successful careers in STEM fields learn by first mastering the calculations, mathematics, and numeracy of problems, and over time build deeper conceptual understandings as they recognize patterns in their answers.  There is a place for these conceptual and symbolic problem solving exercises in AP Physics 1 and on the AP Physics 1 exam, but there is also a significant place for what I’ll call physics numeracy for lack of a better term — traditional problem solving that involves recognizing appropriate relationships, manipulation equations, finding a numerical answer, and verifying that numerical answer makes some sort of physical sense.
    Further, I strongly believe that the College Board’s vision for the AP program should focus on providing opportunities for high school students to earn college credit consistent with the courses offered by most colleges.  More simply, the AP courses should strive to mimic what colleges are offering and testing in their corresponding courses.  In the case of AP Physics 1, the College Board is attempting to lead the way in physics education reform.  Regardless of personal opinions on the direction of the AP Physics 1 curriculum and exam, which may very well be valid, a change of this sort shouldn’t be led by the AP program, but rather mirrored by the AP program as it becomes the norm at colleges and universities.
    The Third Edition
    Back in December, I started work on a third edition of the AP Physics 1 Essentials book, with the goal of migrating the book closer to style of the AP Physics 1 exam.  It’s now late June, and the third edition is well over half done.  I have no doubt if I continued on this course, I could have the third edition completed in time for the book to hit the shelves in late August.
    The third edition, as currently being drafted, however, won’t see the light of day.  Since I started this revision effort, I haven’t felt good about the work I’ve been doing.  Though I do believe I am making a book that is more closely aligned to the AP Physics 1 exam, I’m moving further and further away from the book I’d want to use with my AP Physics 1 students.  Regardless of what the College Board is asking for on the AP Physics 1 exam, I want my students to be best prepared for their future endeavors, which may include AP Physics 2, AP Physics C, and their ongoing academic courses in the sciences.  That will, most assuredly, require strong physics numeracy skills. And it will require students to learn how to learn independently.
    There is a place for physics modeling, for building understanding and for MANY of the ideals inherent in the AP Physics 1 curriculum.  But there’s also a place for the traditional course and problem solving skills.  This debate doesn’t have to be an either/or proposition.  There’s definitely room for a happy medium including aspects of both viewpoints.  Personally, however, I can’t continue work on a third edition of the AP Physics 1 book when in my heart I strongly feel I’m doing my students a disservice in their overall physics education and creating a lower-quality product, even if it means more one-star reviews and critiques that the book doesn’t match the AP 1 exam.  Maybe someday I’ll change my mind, but Friday afternoon I took all the changes to the third edition, zipped them up, copied them somewhere safe, and removed them from my computer.
    I strongly believe there will be a 3rd edition of the AP Physics 1 book.  I see TONS of opportunities for improvement.  But the work I’ve been doing for the past six months to make the book more consistent with the AP 1 exam isn’t really an improvement, it’s an attempt to improve student scores on a test I believe has significant flaws, at the expense of other important skills.  If I’m honest with myself and focus on doing what is truly best for my kids, I want to see them continue to use the book as an introduction to the essential concepts of AP Physics 1, including significant algebraic manipulation and problem solving, and leaving more time in the classroom for application and hands-on activities.  I still feel the book is a great tool for students preparing for the AP 1 exam, and I’m going to keep significant numeric problem solving with basic concept application, and leave the deeper-dive and conceptual understanding questions for class time when the instructor is available to direct, guide, and differentiate as needed.
    This is not meant as an attack on the AP Physics 1 Curriculum, the design committee, the test writers, or any others.  I am honored to work in a profession where so many are so passionate about trying to do what’s best for their students and the field itself.  Sometimes we disagree on the path forward, and that’s OK.  And I could be wrong.  I often am.  I admire the effort and the vision so many have put into this work, and the feedback and support I’ve received and continue to receive for this book, both in praise and in criticism.
    The post AP Physics 1 Essentials — The Mystery Third Edition appeared first on Physics In Flux.

  5. FizziksGuy
    <p>I ran across this “SWEAT” pledge from Mike Rowe and absolutely loved it, so thought I’d share… a great philosophy for taking ownership and control of your life! Learn more about this effort by clicking on the image itself.</p>
    <div style="width: 622px" class="wp-caption aligncenter"><a href="[url="http://profoundlydisconnected.com/foundation/poster/pledgedownload/"]http://profoundlydisconnected.com/foundation/poster/pledgedownload/[/url]"><img class="" [url="src="]src="http://profoundlydisconnected.com/wp-content/uploads/2015/05/Resized-Downloadable-SWEAT-Pledge.jpg"[/url] alt="Mike Rowe's SWEAT Pledge" width="612" height="765" /></a><p class="wp-caption-text">Mike Rowe’s SWEAT Pledge</p></div>
    <p>The post <a rel="nofollow" href="[url="http://aplusphysics.com/flux/events/mike-rowes-s-w-e-a-t-pledge/"]http://aplusphysics.com/flux/events/mike-rowes-s-w-e-a-t-pledge/[/url]">Mike Rowe’s S.W.E.A.T. Pledge</a> appeared first on <a rel="nofollow" [url="href="]href="http://aplusphysics.com/flux">Physics[/url] In Flux</a>.</p>
    <img src="[url="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/Tk4pKgiv6Yk"]http://feeds.feedburner.com/~r/PhysicsInFlux/~4/Tk4pKgiv6Yk[/url]" height="1" width="1" alt=""/>

    <a href="[url="http://feedproxy.google.com/~r/PhysicsInFlux/~3/Tk4pKgiv6Yk/"]http://feedproxy.google.com/~r/PhysicsInFlux/~3/Tk4pKgiv6Yk/[/url]" class='bbc_url' rel='nofollow external'>Source</a>
  6. FizziksGuy
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">Considering an AP Physics course? Outstanding, but which course should you take? The College Board now offers four separate and distinct versions of AP Physics, each designed with very different content, styles, and levels of mathematical complexity.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">Currently, the four physics courses offered are AP Physics 1, AP Physics 2, AP Physics C: Mechanics, and AP Physics C: Electricity and Magnetism. So let’s start by talking about the courses and what each has to offer.</p>
    <h2 style="text-rendering: optimizelegibility; line-height: 1; margin: 0.5rem 0px 1rem; font-size: 2.25rem; font-family: Helvetica, Helvetica, Georgia, serif;">Algebra-Based Courses</h2>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">The new AP Physics 1 and 2 courses are both algebra-based courses, meaning no knowledge of calculus is required, though students should be comfortable with basic algebra and trigonometry. The exams for these courses were first offered in May of 2015, so the courses and the exams are still evolving through their infancy. Further, the AP Physics 1 and AP Physics 2 courses include a strong emphasis on conceptual understanding and critical thinking. Compared to traditional physics courses, these courses include a significant amount of reading and structured writing, experimental design, and critical thinking.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">Though mathematical reasoning and problem-solving are required for success in the course, they aren’t emphasized as strongly as in traditional courses. The courses are centered around seven “big ideas in physics,” and many of the exam problems will test your ability to interpret and apply one or more of these ideas to a new and unique situation (sometimes referred to as a transfer task).</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">Like most introductory physics courses, both AP Physics 1 and AP Physics 2 include a strong lab component to help students develop proficiency in science practices which are crucial to success. The course as a whole focuses on the idea that physics is something you do, not just something you know.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">The associated AP exams for these courses consist of two sections: a 90-minute multiple choice section and a 90-minute free response section. The multiple choice section consists of 50 to 55 questions with four answer choices per question. Unlike most multiple choice tests, however, certain questions may have multiple correct answers that need to be chosen to receive full credit.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">The free response section consists of four or five questions. Typically one question will cover experimental design, one question will cover quantitative and qualitative problem solving and reasoning, and three questions are of the short answer variety. In addition, students are expected to articulate their answers with a paragraph-length response.</p>
    <h3 style="text-rendering: optimizelegibility; line-height: 1; margin: 0.5rem 0px 1rem; font-size: 1.75rem; font-family: Helvetica, Helvetica, Georgia, serif;">AP Physics 1</h3>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">The AP Physics 1 course itself is designed as a first-year physics course. The bulk of the course centers around traditional Newtonian Mechanics, beginning with the study of motion (kinematics), forces (dynamics), work, energy, power, linear momentum, circular motion and rotation, gravity, and oscillations. In addition, AP Physics 1 also includes a brief introduction to mechanical waves, basic electrostatics, and simple electrical circuits.</p>
    <h3 style="text-rendering: optimizelegibility; line-height: 1; margin: 0.5rem 0px 1rem; font-size: 1.75rem; font-family: Helvetica, Helvetica, Georgia, serif;">AP Physics 2</h3>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">AP Physics 2 is designed as a follow-up to AP Physics 1, utilizing the same course philosophy, but extending the content covered to include fluids, thermal physics, a deeper look at electrostatics and more complex electrical circuits, magnetism, optics, and modern physics.</p>
    <h2 style="text-rendering: optimizelegibility; line-height: 1; margin: 0.5rem 0px 1rem; font-size: 2.25rem; font-family: Helvetica, Helvetica, Georgia, serif;">Calculus-Based Courses</h2>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">The two AP Physics C courses both incorporate calculus, so students should have calculus as a pre-requisite or co-requisite for the best possible experience. AP Physics C: Mechanics can be offered as a first-year physics course, though some schools offer both AP Physics C: Mechanics and AP Physics C: Electricity and Magnetism in the same year to students who have prior physics courses in their background.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">Compared to AP Physics 1 and AP Physics 2, the AP Physics C courses follow a more traditional path with a stronger emphasis on quantitative problem solving. The level of calculus complexity is relatively light, with a strong focus on application of principles to various situations as opposed to the longer written explanations of the AP–1 and AP–2 courses.</p>
    <h3 style="text-rendering: optimizelegibility; line-height: 1; margin: 0.5rem 0px 1rem; font-size: 1.75rem; font-family: Helvetica, Helvetica, Georgia, serif;">AP Physics C: Mechanics</h3>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">Similar to AP Physics 1, AP Physics C: Mechanics covers only traditional Newtonian Mechanics. Students study motion, forces, work, energy, power, linear momentum, angular momentum, circular motion, rotational motion, gravity, and oscillations. Compared to AP Physics 1, however, the C course incorporates a higher level of technical complexity, such as dealing with situations of a non-constant acceleration, incorporation of drag forces (such as air resistance), and calculations of rotational inertia.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">Both of the AP-C exams consist of roughly 35 multiple choice questions given in a 45-minute interval, followed by three free response questions in a second 45-minute interval. The AP-C exams are typically given back to back on the same afternoon.</p>
    <h3 style="text-rendering: optimizelegibility; line-height: 1; margin: 0.5rem 0px 1rem; font-size: 1.75rem; font-family: Helvetica, Helvetica, Georgia, serif;">AP Physics C: Electricity &amp; Magnetism</h3>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">The AP Physics C: Electricity &amp; Magnetism course is by far the most technically complex of the AP Physics courses. Beginning with electrostatics, the course includes a detailed look at charges, electric forces, electric fields, electric potential, and capacitors. These concepts are then applied to an analysis of electrical circuits, including circuits with multiple sources of potential difference, real and ideal batteries, and transient analyses of circuits which include capacitors.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">From there, the course transitions into a look at magnetism, with a strong focus on the relationships between electricity and magnetism as Maxwell’s Equations are investigated. It’s typically in this section that students really begin to challenge themselves, applying fundamental relationships (and calculus skills) to problems of increasing sophistication and technical complexity. With the added knowledge of magnetism, inductors are also discussed and tied back into the analysis of electrical circuits.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">As you can see from the course descriptions, both of the AP Physics C courses are quite limited in scope, allowing for a much deeper exploration of the fundamental relationships and their application to various problems and situations.</p>
    <h2 style="text-rendering: optimizelegibility; line-height: 1; margin: 0.5rem 0px 1rem; font-size: 2.25rem; font-family: Helvetica, Helvetica, Georgia, serif;">Long-Term Goals</h2>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">So then, back to our original question – which AP Physics course should you take? The answer, as is so often the case in life, is that it depends. Students who are planning on a career in engineering or physics should definitely consider the calculus-based courses (AP Physics C). These courses are fundamental to future studies, and a majority of colleges and universities accept scores of 4 or 5 in these courses for credit (though many students choose to re-take these courses to further cement their understanding of the fundamental concepts and boost their freshman GPA).</p>
    <p><img style="float: right;" title="AP-1-2-C Table.001.png" src="http://aplusphysics.com/flux/wp-content/uploads/2015/05/AP-1-2-C-Table.001.png" alt="AP 1 2 C Table 001" width="400" height="237" border="0" /></p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">For students who aren’t planning on a career in engineering or physics, the AP Physics 1 / AP Physics 2 series might be a better answer if their school of choice accepts AP–1/2 credit, as AP Physics C could be “overkill” compared to future course requirements. The problem, however, is that the AP Physics 1 and AP Physics 2 courses are so new that many colleges don’t know how to deal with them, and as of the writing of this article, there aren’t many schools that provide college credit for strong scores on the exams, as the course content and philosophy often times don’t match up well with the college’s offerings. For this reason, students who are up for a challenge and enjoy problem solving may want to target the AP Physics C course, even if they aren’t planning on a career in engineering or physics. Many universities will give credit for a good score in AP Physics C as a general science credit.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">To complicate matters, there are often times opportunities to take a sequence of these courses. In many high schools, AP Physics C is offered as a second-year physics course, with students taking on both the Mechanics and E&amp;M courses in a single year. It’s a fast-paced course, but doable for those who have successfully passed an introductory physics course. For those taking physics for the first time, AP Physics C: Mechanics is a reasonable year-long endeavor. Some schools with extended class times offer both AP–1 and AP–2 in the same year, though this is a very aggressive undertaking.</p>
    <h2 style="text-rendering: optimizelegibility; line-height: 1; margin: 0.5rem 0px 1rem; font-size: 2.25rem; font-family: Helvetica, Helvetica, Georgia, serif;">Summarizing the Choices</h2>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">To summarize as best I can in this nebulous time period, AP Physics C courses are traditionally for students heading toward physics and/or engineering related career paths, and require a pre-requisite or co-requisite in calculus. Definitely take AP-C Mechanics before AP-C E&amp;M, though it is possible to do both in the same year, especially with some prior physics background. For students not taking calculus or not headed toward physics or engineering careers, AP Physics 1 is a great place to start, with AP Physics 2 a reasonable follow-up for those interested. The concern with these choices is the newness of the courses, and whether colleges and universities will give credit for a strong AP score. As always, discussing and planning out course selections with a guidance counselor in consultation with an admissions counselor is highly advised.</p>
    <h2 style="text-rendering: optimizelegibility; line-height: 1; margin: 0.5rem 0px 1rem; font-size: 2.25rem; font-family: Helvetica, Helvetica, Georgia, serif;">Strategies for Success</h2>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">Regardless of which course(s) you choose, the AP Physics courses are challenging courses that require a level of independence and personal accountability to learn the material. These courses aren’t designed for “spoon feeding,” in which the instructor lectures, students listen, and everything works out. In order to truly understand the material and perform well on the culminating exam, you must engage in the class on a daily basis, struggle through the challenging problems, make mistakes again and again, and learn from them. Actively participate in classroom and lab activities and discussions, ask questions, but be prepared to search out your own answers. And don’t be afraid to take a step back every now and then and think about how what you’re learning applies to the course goals as a whole. Concept-mapping or outlining the topics in the course can be a terrific way to make connections you might not otherwise recognize.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 17px; line-height: 32px;">And of course, you have tons of resources to help you. Beyond just your textbook (which I do recommend you actually open and actively read) and teacher, you’ll find outstanding video tutorials and Q&amp;A forums like those at <a style="color: #308bd8; text-decoration: none;" title="Educator.com" href="http://educator.com/">Educator.com</a>, discussion and <a style="color: #308bd8; text-decoration: none;" title="Homework Help" href="http://aplusphysics.com/community/index.php/forum/13-homework-help/">homework help</a> communities, <a style="color: #308bd8; text-decoration: none;" title="AP-C Guide Sheets" href="http://www.aplusphysics.com/courses/ap-c/APC_Physics.html">“cheat sheets,”</a> and extra problems at <a style="color: #308bd8; text-decoration: none;" title="APlusPhysics.com" href="http://aplusphysics.com/">APlusPhysics.com</a>, and of course there are some great review and companion books available for these specific courses.</p>
    <p><strong>About the Author </strong></p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 15px; line-height: 28px;">Dan Fullerton is the author of <a href="http://aplusphysics.com/ap1" target="_blank">AP Physics 1 Essentials</a>, <a href="http://aplusphysics.com/ap2/" target="_blank">AP Physics 2 Essentials</a>, and the <a href="http://aplusphysics.com" target="_blank">APlusPhysics.com</a> website. He is an AP Physics teacher at <a href="http://www.westirondequoit.org/ihs/" target="_blank">Irondequoit High School</a> in Rochester, NY, and was named a <a href="https://www.suny.edu/masterteacher/" target="_blank">New York State Master Physics Teacher</a> in 2014.</p>
    <p style="margin: 0px 0px 1.5em; font-family: Helvetica, Helvetica, Georgia, serif; font-size: 13px; line-height: 32px;"><em>AP and Advanced Placement Program are registered trademarks of the College Board, which does not sponsor or endorse this work.</em></p>
    <img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/04gbRiHeHNY" height="1" width="1" alt=""/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/04gbRiHeHNY/" class='bbc_url' rel='nofollow external'>Source</a>
  7. FizziksGuy
    <p><iframe width="660" height="371" src="https://www.youtube.com/embed/GyTFznnrtTs?feature=oembed" frameborder="0" allowfullscreen></iframe></p>
    <p>Questions here: <a href="https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap15_frq_physics_1.pdf" target="_blank">https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap15_frq_physics_1.pdf</a></p>
    <img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/f1UsO3MAXNk" height="1" width="1" alt=""/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/f1UsO3MAXNk/" class='bbc_url' rel='nofollow external'>Source</a>
  8. FizziksGuy
    <p><iframe width="474" height="267" src="https://www.youtube.com/embed/NBrDW-vNHog?feature=oembed"frameborder="0" allowfullscreen></iframe></p>
    <p><iframe width="474" height="267" src="https://www.youtube.com/embed/Ejp8aurJ294?feature=oembed"frameborder="0" allowfullscreen></iframe></p>
    <p>Mechanics Exam Questions: https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap15_frq_physics_c-m.pdf</p>
    <p>E&amp;M Exam Questions: https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap15_frq_physics_c-e-m.pdf</p>
    <img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/iUAb2okjHqQ"height="1" width="1" alt=""/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/iUAb2okjHqQ/"class='bbc_url' rel='nofollow external'>Source</a>
  9. FizziksGuy
    <p>Recently I replied to a post on the College Board’s AP Physics Teacher discussion forum, an act that always seems to be a dicey proposition. A teacher had asked other AP physics teachers for instructional physics video recommendations. I replied with links to one of my favorite video series, the MIT 8.xx introductory calculus-based physics series put together by Prof. Walter Lewin.</p>
    <p>If you are unaware, Prof. Lewin’s lectures have been immensely popular and have been in many ways the “de facto” standard for online physics lectures. His preparation was well thought out, his content coverage thorough, his demonstrations engaging, and his performances nearly flawless.</p>
    <p>Recently, however, Dr. Lewin’s lectures have been pulled from the MIT website due to an investigation in which MIT determined that Lewin “had sexually harassed at least one student online.” (<a href="http://tech.mit.edu/V134/N60/walterlewin.html">linkhere</a>). You can still find versions on YouTube.</p>
    <p>Following my post on the discussion forum, I received several responses from instructors stating that they would not recommend the videos any longer. I briefly responded that the quality of the videos didn’t change, therefore even though Lewin may have been acting in appropriately personally, the videos were not affected and retain their educational value.</p>
    <p>Several responses were quickly received, ranging from recommendations to use alternate videos to a response stating that posting materials associated with Lewin would be morally irresponsible. Though I do understand the concerns, I think disappointment in the behavior of one of our “physics heroes” is clouding the collective judgment.</p>
    <p>If referencing the works of scientists who have had personal ethical or moral failings is the “correct response,” we need to recognize how much great work must be thrown away. It doesn’t take long to research the personal lives of Albert Einstein, Richard Feynman, Marie Curie, Edwin Schrodinger, or even Stephen Hawking to find well documented evidence of significant personal life scandals. Why is it that referencing their works in the classroom isn’t morally irresponsible, but referencing Lewin’s is?</p>
    <p>This same issue surfaces again and again outside just the scientific world. Were Babe Ruth’s accomplishments less amazing (especially in relation to other baseball players of his time) knowing his personal behavior off the field? Were Pete Rose’s 4,192 hits less valuable to his team because he was later found to have a gambling addiction? Should the Cosby Show be banned from syndication due to the show’s star alleged indiscretions? In working toward my teaching certification, my class studied a book by Bill Ayers, whose past actions could easy label him a domestic terrorist. Despite his past, however, as a class we were able to explore and debate the philosophies he promoted in his book in a productive manner. We even re-elected a sitting president who lied under oath AND engaged in significant sexual misconduct. </p>
    <p>My point isn’t that any of these behaviors are anywhere close to acceptable, nor that we should excuse them. Nothing could be farther from the truth. My point, however, is that pulling Lewin’s videos punishes the many students who could benefit from them. Severing ties with the author, closing the associated discussion forums, and similar actions appear reasonable. Removing the good works done by this individual only makes a bad situation worse. Finally, to say that using the works of a public figure discredited for personal indiscretions is “morally irresponsible,” when looked at in a wider view, just becomes silly. How many library books must you pull from the shelves? How many theories and inventions must be destroyed? And where do you draw the line on what level of personal indiscretion warrants these actions? Is it a felony? A misdemeanor? Last week I received my first traffic ticket for a broken taillight (which was fixed first thing the next morning) — does that invalidate what small contributions I’ve attempted to make to my field?</p>
    <p>Let’s move back to reality. A beloved and popular teacher allegedly screwed up. Big time. We’re disappointed, and we’re hurt. One of our heroes fell. I get it, and I’m hurt too. But his mistakes don’t invalidate his 40+ years of excellent teaching. Our world is just not that simple.</p>
    <img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/nCqfDO3dmJQ"height="1" width="1" alt=""/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/nCqfDO3dmJQ/"class='bbc_url' rel='nofollow external'>Source</a>
  10. FizziksGuy
    <p><img style="display: block; margin-left: auto; margin-right: auto;" title="NewImage.png" src="http://aplusphysics.com/wordpress/apc/wp-content/uploads/2015/02/NewImage2.png"alt="NewImage" width="600" height="372" border="0" /></p>
    <h3 class="null" style="color: #606060; margin: 0px; padding: 0px; font-size: 18px; line-height: 22.4999980926514px; letter-spacing: -0.5px;">At the beginning of the twentieth century, Albert Einstein changed the way we think about time. Near the end of the twentieth century scientists learned how to cool a gas of atoms to temperatures billions of times lower than anything else in the universe. </p>
    <p>Now, in the 21<sup>st</sup> century, Einstein’s thinking and ultracold atoms are shaping the development of atomic clocks, the best timekeepers ever made. Such super-accurate clocks are essential to industry, commerce, and science. They are the heart of the Global Positioning System (GPS) that guides cars, airplanes, and hikers to their destinations. </p>
    <p>Today, the best primary atomic clocks use ultracold atoms, achieve accuracies better than a second in 300 million years, and are getting better all the time. Super-cold atoms, with temperatures that can be below a billionth of a degree above absolute zero, allow tests of some of Einstein’s strangest predictions. <br /> <br />Join Dr. Phillips for be a lively, multimedia presentation—including experimental demonstrations and down-to-earth explanations about some of today’s most exciting science.</h3>
    <p><br style="color: #606060; font-size: 15px; line-height: 22.5px;" /><span style="color: #606060; line-height: 22.5px; font-size: 14px;">Dr. William D. Phillips is the leader of the Laser Cooling and Trapping Group of the National Institute for Standards and Technology’s Physical Measurement Laboratory—and also a Distinguished University Professor at the University of Maryland. Dr. Phillips’s research group studies the physics of ultracold atomic gases. In 1997, he shared the Nobel Prize in Physics “for development of methods to cool and trap atoms with laser light.”</span></p>
    <p><span style="color: #606060; line-height: 22.5px; font-size: 14px;"><br /></span></p>
    <p><span style="color: #606060; line-height: 22.5px; font-size: 14px;">March 5 at 7 pm at the Student Alumni Union, Ingle Auditorium, Rochester Institute of Technology</span></p>
    <img src="//feeds.feedburner.com/~r/PhysicsInFlux/~4/4CjrjEbM9ec" height="1" width="1" alt=""/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/4CjrjEbM9ec/"class='bbc_url' rel='nofollow external'>Source</a>
  11. FizziksGuy
    <p><span style="color: #141823; font-family: Helvetica, Arial, 'lucida grande', tahoma, verdana, arial, sans-serif; font-size: 14px; line-height: 20px;">Still having folks attempting to use the AP Physics 1 Essentials book as a primary text instead of the “read this at home as an intro so you’re prepared to go deeper in class” tool it was intended as. I wish I could put a disclaimer on the</span><span class="text_exposed_show" style="display: inline; color: #141823; font-family: Helvetica, Arial, 'lucida grande', tahoma, verdana, arial, sans-serif; font-size: 14px; line-height: 20px;"> <a style="color: #3b5998; cursor: pointer; text-decoration: none;" href="http://amazon.com/"rel="nofollow nofollow" target="_blank">Amazon.com</a> “Buy” button so folks would read the description before purchasing.</p>
    <p>I hate seeing disappointed readers and reading negative reviews, especially when I realize that these are students and teachers counting on support in their studies. And of course I realize you can’t please everyone. But I also don’t want to create the “standard”-type review book.</p>
    <p>These are the books I’d want to use (and do use) with my students, where the book is designed to provide the “essential” background knowledge so that students can walk into class having read and understood enough to begin exploring the concepts in a much deeper fashion through activities, discourse, debate, and deeper thinking questions. AP Physics 1 Essentials is supposed to be the “flipped classroom” version of a review book, and in the same style as the flipped class videos available on the APlusPhysics site. It’s not supposed to compete with Greg Jacobs’ amazing work with his 5 Steps to a 5 series (which I HIGHLY recommend), where he does a great job with a book that is part “here’s what you need to know” and part “here’s how to ace the test.” And it’s certainly not designed to take on the Barron’s Review Series. They already do a great job with a deep overview of the entire course — it would be ludicrous to try to outdo such excellent work.</p>
    <p>Instead, AP Physics 1 Essentials is supposed to be an alternate path, a different kind of resource. The kind of book you give a student who is struggling to help them ferret out the simple basic relationships, and begin to take them further. But it’s not meant to be used in isolation, and it certainly isn’t meant to be a “do it yourself at home” guide to the entire AP Physics 1 exam.</p>
    <p>As the AP-2 book nears completion, I’m worried I’ve taken some of the negative reviews to heart and made portions of it too complex. I need to keep in mind what this book is designed for, and what it isn’t. It isn’t meant to be all things to all people, and despite the occasional negative review, I think it’s important to stay true to its aim. I want it to cover the essential concepts of the course in as straightforward a manner as I can manage, keep it light and fun, and provide some very basic sample problems (with solutions RIGHT THERE in the text) so students can test their understanding as they go. The goal again is to provide a resource that will allow the instructor more in-class time to develop the deeper understanding and problem solving skills necessary for success in AP-2, NOT try to accomplish this all in a little review book. I’ll again look into including an appendix of more AP-2 style problems, but I don’t want that to become the focus (one of the reasons why all the appendix problems are placed in the public domain and freely available outside the context of the book).</p>
    <p>I guess I just needed to vent a little in a friendly place and give myself some “writing” therapy. I can’t say enough about the tremendous support I receive from so much of the physics teaching community, and I need to continue to focus on the positives. It was students who got me started on flipping the classroom and creating the videos, teachers in the community who convinced me to put it together into a book, and the great feedback and requests from teachers and students alike that keep me plugging away on these projects such as the AP-2 book (and then a long list of video lessons to get back to).</p>
    <p>The bottom line is I switched careers and became a teacher because I enjoyed it, it was fun. I started work on the videos, books, and website because it helped students, and I enjoyed it. I’ve continued working on these resources due to the amazing feedback and support, and because it’s fun. Now I need to kick myself in the rear end and remind myself that there’s not a thing I can do about the folks who are expecting the book to be something it’s not. These books and videos aren’t going to make themselves, and it’s supposed to be fun, so it’s time for me to quit whining and get back to work.</p>
    <p>Make it a great day!</span></p>
    <img src="//feeds.feedburner.com/~r/PhysicsInFlux/~4/va5-m_1_TeU" height="1" width="1" alt=""/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/va5-m_1_TeU/"class='bbc_url' rel='nofollow external'>Source</a>
  12. FizziksGuy
    <p>On Tuesday evening I had the opportunity to attend a professional development seminar on Skills Based Grading at SUNY Geneseo as part of the NYS Master Teacher Program. Below are some of my musings / quick notes as I participated in the seminar. I very much enjoyed hearing about how others have utilized SBG and comparing to my program.</p>
    <p>Goal for the session is for the presenters, George Reuter and Amy to provide a snippet of what Standards Based Grading is and how it can be implemented, coupled with a work session in which a structure is implemented with a SBG philosophy.</p>
    <p>Use SBG as a communication tool — highlight strengths as well as opportunities for improvement.</p>
    <p>SBG as a process. Learn a new skill, practice that skill, test that skill, receive feedback, practice needed skills, etc.</p>
    <p>Analogy — just like runners have multiple opportunities to practice and show their skill, so will students have multiple opportunities to demonstrate their learning.</p>
    <p>Work on progressions toward mastery — set up rubric to support your end-goal.</p>
    <p>Ways of determining scores — average all scores, decaying average, most recent, other? (I keep the two most recent).</p>
    <p>Presenter spends hours and hours grading assessments — I mentioned Remark OMR and opportunities to automate that work, specifically how I’ve significantly reduced my workload using SBG. Presenter also spent many hours in parent presentations about the grading system. I side-stepped that by creating a flipped classroom video explaining my grading system.</p>
    <p>After a bit more discussion, we split into various groups to talk about various ramifications, issues, concerns, and successes using SBG. Overall, a valuable evening!</p>
    <img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/UCJTlxSVdyc" height="1" width="1"/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/UCJTlxSVdyc/" class='bbc_url' rel='nofollow external'>Source</a>
  13. FizziksGuy
    <p>Beginning this year, the <a style="color: #308bd8; text-decoration: none;" href="https://www.collegeboard.org/">College Board</a> will be replacing their <a style="color: #308bd8; text-decoration: none;" href="http://apcentral.collegeboard.com/apc/members/exam/exam_information/2007.html">AP Physics B</a> algebra-based physics course with two separate algebra-based physics courses, titled <a style="color: #308bd8; text-decoration: none;" href="http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/2262.html">AP Physics 1</a> and <a style="color: #308bd8; text-decoration: none;" href="http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/225113.html">AP Physics 2</a>. The two calculus-based courses, <a style="color: #308bd8; text-decoration: none;" href="http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/2264.html">AP Physics C: Mechanics</a> and <a style="color: #308bd8; text-decoration: none;" href="http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/2263.html">AP Physics C: Electricity and Magnetism</a>, will remain the same.</p>
    <h3>Why the Change?</h3>
    <p>So <img style="float: right;" title="professor_of_physics_hg_clr.gif" src="http://aplusphysics.com/flux/wp-content/uploads/2014/07/professor_of_physics_hg_clr.gif" alt="Professor of physics hg clr" width="312" height="312" border="0" />what does this change entail, and why has this change been undertaken? A study by the <a style="color: #308bd8; text-decoration: none;" href="http://www.nationalacademies.org/nrc/">National Research Council</a> concluded that the AP Physics B course “encourages cursory treatment of very important topics in physics rather than a deeper understanding,” according to the <a style="color: #308bd8; text-decoration: none;" href="http://apcentral.collegeboard.com/apc/members/exam/exam_information/225589.html">College Board’s FAQ</a>, and that students’ study of mechanics should include rotational dynamics and angular momentum, which are not part of the AP Physics B curriculum. The NRC recommended teaching the course over two years to emphasize inquiry-based instruction and deeper understandings. The College Board agreed.</p>
    <h3>What’s Involved?</h3>
    <p>The new AP Physics 1 course is targeted as equivalent to a one-semester college course in algebra-based physics, though the selection of topics for the course includes some irregularities compared to a standard introductory college physics course. Topics included in AP Physics 1 include kinematics; dynamics; momentum; work, energy, and power; rotation; oscillations; gravity; mechanical waves; and basic electric circuits. Most of these are topics that were previously on the AP-B exam, though the inclusion of rotation and angular momentum are new topics. Further, the emphasis on mechanics in an introductory college course is standard, but the inclusion of electric circuits is rather irregular. According to a committee member involved in the redesign of the course, the inclusion of circuits was forced into the new course to meet the needs of end-of-year state assessments for several large states, and was not originally part of the redesign plans.</p>
    <p>The new AP Physics 2 course is intended as an equivalent to a second-semester college course, covering fluid mechanics, thermal physics, electricity and magnetism, optics, and atomic / modern physics. Most of these topics were included in the previous AP-B course, though the modern physics portion of the course includes several new sub-topics.</p>
    <h3>A New Paradigm</h3>
    <p>Considerably more dramatic than just shifts in content, however, is the overall organization of the course. The new AP–1 and AP–2 courses are organized around seven “big ideas” in physics, coupled with an extensive list of essential knowledge (EK) and learning objectives (LOs) details what students should know and be able to do. Although these EKs and LOs are numerous, they are also quite vague in terms of how “deeply” students are expected to know a topic. As an example, several learning objectives discuss an understanding of springs in various contexts, but whether that also includes combinations of springs is left significantly vague. In the thermal physics arena, heat engines are not specifically covered, but students are expected to understand energy transfer in thermodynamic systems (which could be tested in the context of a heat engine). If it sounds a bit vague, I can’t disagree. Teachers across the country are also struggling to interpret the documentation about the new exams.</p>
    <p><img style="float: right;" title="tourist_map_confusion_hg_clr.gif" src="http://aplusphysics.com/flux/wp-content/uploads/2014/07/tourist_map_confusion_hg_clr.gif" alt="Tourist map confusion hg clr" width="243" height="312" border="0" /></p>
    <p>Also of interest is the focus on science practices. In addition to the 7 big ideas, the College Board has also identified <a style="color: #308bd8; text-decoration: none;" href="http://media.collegeboard.com/digitalServices/pdf/ap/2012advances/11b_4615_AP_Physics_CF_WEB_120910.pdf">7 science practices</a> that are essential for success. These practices are broken down in detail, with course activities designed to verify students can “use mathematics appropriately” and “plan and implement data collection strategies in relation to a particular scientific question,” for example. My detailed breakdown of the course curriculum frameworks can be found on the <a style="color: #308bd8; text-decoration: none;" href="http://www.aplusphysics.com/educators/AP1Outline.html/index.html">AP1 Roadmap</a> and <a style="color: #308bd8; text-decoration: none;" href="http://www.aplusphysics.com/educators/AP2Outline.html/index.html">AP2 Roadmap</a> documents.</p>
    <p>Ultimately, the goal of these changes is to provide an opportunity for students to develop a deeper understanding of the underlying foundational concepts in physics as well as the skills and practices necessary to treat physics as a science activity instead of a body of knowledge, better preparing students for success in further coursework as well as careers in science and engineering.</p>
    <h3>A New Exam</h3>
    <p>In late spring / early summer, the College Board released a secured practice exam to certified AP Physics teachers to better prepare for the new AP–1 and AP–2 exams. The change in style of the exam is quite significant. Questions place a strong emphasis on relational and conceptual problem solving, as well as application of the science practices, coupled with a significant decrease in “math-only” quantitative solutions. The new exam also emphasizes symbolic manipulation, analyzing situations from multiple perspectives, designing experiments, justification of answers, and scientific argumentation.</p>
    <p>Many of these changes are directly in line with the <a style="color: #308bd8; text-decoration: none;" href="http://modeling.asu.edu/modeling-HS.html">Modeling Physics</a> method of instruction, which emphasizes ongoing guided inquiry while maintaining consistency in approach and building upon previously-developed models throughout the course, a method strongly recommended by current <a style="color: #308bd8; text-decoration: none;" href="http://www.compadre.org/per/">Physics Education Research</a>.</p>
    <p>Although the changes to the courses are numerous, the general message to teachers and students is consistently clear: physics is something you do, not something you know. Success in the new AP–1 and AP–2 courses requires a multi-faceted approach to learning which includes hands-on inquiry and exploration activities, mastery of content and problem-solving principles, and the ability to reason, argue, and justify scientifically.</p>
    <h3>How To Succeed</h3>
    <p>So then how do students succeed in this brave new world? I would humbly recommend a learning plan which includes an ongoing cycle of exploration, refinement, and application. As students work through each unit/topic/model, begin with an opportunity to active explore the model, determine what is known, what is unknown, and what misconceptions might exist. Follow that up with activities that allow students to refine their knowledge through the collection and analysis of data, drawing their own conclusions to discuss and debate. Finally, these conclusions and skills need to be transferred and applied to new and unique situations, allowing students to determine where these models work, and where they fall short (setting the stage for development of the next model!)</p>
    <h3>Supplemental Resources</h3>
    <p>It sounds daunting, but there are tons of great resources available to help students succeed in these endeavors. Besides reading the textbook, a skill which is difficult to master yet extremely valuable, a review of the key material distilled down into a clean easy-to-understand format can be invaluable. I have been teaching online courses with the use of video since 2003, so please let me be clear, I absolutely do <strong>not</strong> believe in passive instruction by video. A little bit of me dies inside everytime I read about classes in which students are placed in front of a computer as the sole means of instruction. Besides being ineffective, how boring! Physics is supposed to be fun, and I have trouble imagining how students can make it through such lonely, soulless courses.</p>
    <p><img style="float: right;" title="image.jpeg" src="http://aplusphysics.com/flux/wp-content/uploads/2014/07/image.jpeg" alt="Image" width="300" height="225" border="0" /></p>
    <p>I do, however, believe that supplemental on-demand video lessons taught by strong instructors such as those at <a style="color: #308bd8; text-decoration: none;" href="http://educator.com/">Educator.com</a> and my AP Physics Series at <a href="http://aplusphysics.com">APlusPhysics.com</a> can do wonders for cementing the foundational concepts and demonstrating application of these foundational concepts to problem solving, especially in the refinement and application stages of instruction. Undertaking learning through inquiry and modeling can be messy and confusing. Having an online instructor there to assist in cleaning things up or explaining things in a different manner or from an alternate perspective can make a world of difference.</p>
    <p>Further, review books such as <a style="color: #308bd8; text-decoration: none;" href="http://aplusphysics.com/ap1">AP Physics 1 Essentials</a> are designed to assist in these stages of learning, not as a replacement for the oh-so-valuable active learning experiences, but rather as an easily accessible means of solidifying the basic relationships and concepts. I wrote <a style="color: #308bd8; text-decoration: none;" href="http://aplusphysics.com/ap1">AP1 Essentials</a> to help students understand essential physical relationships in a manner that is straightforward and easy-to-read, leaving development of in-depth problem solving and lab work for the classroom, where they are most effective. A review book can’t help a student if it’s so complex the student won’t read it. Instead, the goal for this book was to create a resource that students would actually read and enjoy, and help them along their path to a deeper conceptual understanding.</p>
    <h3>Putting It All Together</h3>
    <p>There is no “one-stop shopping” or easy path to success in AP Physics 1 or AP Physics 2, and strategies that may have worked for the previous AP Physics B course may no longer be successful. Instead, these new courses are comprehensive learning experiences combining exploration, experimentation, application, and communication skills. Only by putting in the effort and struggling through the frustrations will students find their way to mastery of the course. But they don’t have to go it alone – these courses are designed around collaboration and teamwork, and there are great supplemental resources to help out as well.</p>
    <p><img style="float: right;" title="APlusPhysics_Logo_HDef.png" src="http://aplusphysics.com/flux/wp-content/uploads/2014/07/APlusPhysics_Logo_HDef.png" alt="APlusPhysics Logo HDef" width="200" height="142" border="0" /><em>About the Author – <a style="color: #308bd8; text-decoration: none;" href="http://danfullerton.com/">Dan Fullerton</a> is a physics instructor at <a style="color: #308bd8; text-decoration: none;" href="http://www.westirondequoit.org/ihs/">Irondequoit High School</a> in Rochester, NY, and an adjunct professor of <a style="color: #308bd8; text-decoration: none;" href="http://www.rit.edu/kgcoe/eme/MicroEoverview">microelectronic engineering</a> at <a style="color: #308bd8; text-decoration: none;" href="http://rit.edu/">Rochester Institute of Technology</a>. He was named a <a style="color: #308bd8; text-decoration: none;" href="https://www.suny.edu/masterteacher/about/">NY State Master Physics Teacher</a> in 2014. Fullerton is featured in the AP Physics C and AP Physics 1 &amp; 2 video courses on <a style="color: #308bd8; text-decoration: none;" href="http://educator.com/">Educator.com</a>. He is the author of AP Physics 1 Essentials and creator of the <a style="color: #308bd8; text-decoration: none;" href="http://aplusphysics.com/">APlusPhysics.com</a> website. Fullerton lives in Webster, NY, with his beautiful wife, two indefatigable daughters, and sleepy dog.</em></p>
    <!-- Start Shareaholic Recommendations Automatic --><!-- End Shareaholic Recommendations Automatic --><img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/8kodgBUBhZc" height="1" width="1"/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/8kodgBUBhZc/" class='bbc_url' rel='nofollow external'>Source</a>
  14. FizziksGuy
    <p><a href="http://educator.com"><img style="float: right;" title="image.jpeg" src="http://aplusphysics.com/flux/wp-content/uploads/2014/07/image1.jpeg" alt="Image" width="300" height="225" border="0" /></a></p>
    <p>It’s my last day on the west coast following two weeks of recording at the <a href="http://educator.com">Educator.com</a> studios in Los Angeles. I’ve completed filming of the AP Physics C: Mechanics and the AP Physics C: Electricity and Magnetism courses, and roughly 18 months ago finished recording the AP Physics 1 and AP Physics 2 course sequences. At the conclusion of this massive effort, I thought it fitting to take a few minutes and summarize what I’ve learned from the experience.</p>
    <p>First, I’m amazed at the total amount of content involved in these projects when all was said and done. The AP Physics 1/2 course includes more than 930 slides, and the AP Physics C total is up over 950. Coupled with diagrams, formulas, and illustrations, these represent roughly a year’s worth of full-time effort, squeezed in to an already busy schedule with early morning work, weekends, and middle-of-the-night can’t sleep sessions.</p>
    <p>Second, I’ve recognized how challenging the content truly is for the AP-C course. I had some of the content prepared already from my APlusPhysics videos, yet it still took me more than 5 months to create the more-detailed Educator.com lessons. I designed each lesson in detail, and even made notes on what I would discuss, derive, and explain on each individual slide. When I reached the studios in LA, however, I still had tons of preparation work to do. Each day I rehearsed every lesson three times before filming. I’d go over the lessons in detail (including solving all problems and writing out all derivations in my notebook) over an extended dinner each night in the hotel, then go back to my hotel room and do it all again while listening to a baseball game before bed. Early the following morning, I’d get up around 5 am and go through it once more before our 9- or 10-am filming session would begin. Once filming for the day was complete, I’d do it all again in preparation for the next set of lessons. I wonder if I didn’t do more physics homework in my two weeks of filming in LA than my students do in an entire year.</p>
    <p>I found as I went through this that every time I solved a free response problem or walked through a derivation, I found slightly different methods of solving the problem. Some were smoother than others; some were longer than others. Even though my final passes were usually “cleaner” than my initial solutions, I tried to stick with my initial solutions in the videos to better mirror the approach students might take.</p>
    <p>Even with all that preparation, the recording sessions were still quite stressful. In walking through the lessons, there were technical components to the presentation that were fairly unforgiving. Hit the wrong button in the wrong order and you’d have to start all over again. Switch colors and then switch slides before writing and you’d have to do it all over again. Cough, sneeze, or forget where you are in a lecture or stump yourself — you got it, do it all again. Thankfully, I’d had quite a bit of experience in this sort of thing from my previous trip out to LA to record the AP-1/2 series, so the amount of “re-do” work was kept to a minimum due to all that preparation. But recording four hours of video lessons sure felt like a 12+ hour day.</p>
    <p>In addition, I still found the AP-C material challenging. In my classroom, I prepare with 42-minute lessons, and the longest I ever lecture in a row is one entire 42-minute period (and I try to avoid that like the plague). Here, the lessons are straight lecture, with no breaks, no edits, no room for error. That leaves a lot of material to have down cold while also dealing with technical concerns. My detailed noted were invaluable, and I referred to them throughout my lectures to make sure I covered all the salient points in each slide, as well as having calculations pre-solved, as opposed to making viewers wait while I punched numbed into my calculator. With my preparation, my time between lessons was approximately 10 minutes or so to get a quick drink, review the slides for the next lesson for any last-minute issues, and allow the technical folks to prepare the studio for the next round. Others in the studio, however, would take extended time between recording lessons in order to prepare. They had the luxury as they were fairly local to the studios, and could spread their recording work out over months.</p>
    <p>Working through these courses from start to finish in such a detailed manner in such a compressed time span provides a unique perspective on the course. Each lesson is designed to present a concept as simply as possible, illustrate that concept, and then demonstrate its application in a variety of scenarios. In creating these courses I solved every released AP-C free response problem going back to 1998, as well as a scattering of earlier problems. With the entire breadth of the course fresh in my mind, I’m confident the foundational principles emphasized in the course provide excellent preparation for students taking the AP Physics C exams. </p>
    <p>One of my goals in creating these courses was to provide a more streamlined video series than their previous video series. Their previous courses totaled 48 hours for mechanics, and 41 hours for electricity and magnetism. My goal was to cut each of those at least in half, allowing students to minimize their time watching videos, and instead maximize their time actively working with the material. I haven’t seen the final count for the new courses, but I’m confident we’ll be close, if not under, our target.</p>
    <p><img style="float: right;" title="uncle_bob_has_a_toupee_hg_clr_st.gif" src="http://aplusphysics.com/flux/wp-content/uploads/2014/07/uncle_bob_has_a_toupee_hg_clr_st.gif" alt="Uncle bob has a toupee hg clr st" width="200" height="350" border="0" /></p>
    <p>I’m also excited that the College Board will be allowing students the use of formula sheets and calculators throughout the entire exam next year. Even after studying and preparing all day every day for weeks, I still referenced my formula sheets and notes in solving problems and preparing. Memorizing formulas does not constitute learning or understanding, and removing the requirement to have all these formulas memorized will allow students to better focus on what is important.</p>
    <p>Finally, I knew being gone from my family for two weeks would be difficult. I have a two-year-old and a four-year-old daughter at home, and they are already growing up way too fast. I treasure my time with them, especially our time in the summer when Daddy-Daughter Day Care includes swimming, playing around out back in the sandbox and water table, riding bikes, playground time, and so on. But it’s been even tougher than I expected. I’m so thankful for modern technology which allows me to see them and talk to them each day, but when your little girls says all she wants is you to curl up in bed with her after story time at night, it tugs on your heart strings something fierce.</p>
    <p>I’m proud of what we’ve put together here at Educator.com through these efforts, and hopeful that students across the world will find these videos helpful in their studies. I’m also excited to know that I will be able to use these resources with my students in the coming years. I’m relieved to have finished this project, eager to refocus my efforts on other projects such as revisions to <a href="http://aplusphysics.com/ap1">AP Physics 1 Essentials</a> and completing <a href="http://aplusphysics.com/ap2">AP Physics 2 Essentials</a>, but most importantly, I can’t wait to get home and hug my girls.</p>
    <!-- Start Shareaholic Recommendations Automatic --><!-- End Shareaholic Recommendations Automatic --><img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/RW9AunwM-oY" height="1" width="1"/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/RW9AunwM-oY/" class='bbc_url' rel='nofollow external'>Source</a>
  15. FizziksGuy
    <p>Yesterday I received a review on Amazon for the AP1 book that was, at best, scathing. Please allow me a moment to first state that the reviewer is correct in his statement that the book doesn’t contain many of the high level, conceptual, reading-intensive questions that are found on the AP1 practice exams. I agree, as that is not the book’s intent. We have college level texts all over the place that do a MUCH better job as a primary source and going into detail. They are much bigger, are much more expensive, and are backed by much larger companies. I think the reviewer, however, missed the point of the book.</p>
    <p>The AP1 Physics Essentials book is designed to be a guide book that students will actually read, starting from basic principles and building fundamental concepts with simple examples (many from past NY Regents Physics Exams) and then building upon those examples to intermediate level problems, which are demonstrated in detail. The goal is to allow students to build these “essentials” so that they can get a better foundation in concepts and basic applications independently (as, of course, reading is primarily an independent activity).</p>
    <p>The AP-1 style exam problems, however, are considerably different. They focus on considerably more complex problems, are challenging to read and interpret what is being asked, tie multiple concepts together in unique and novel applications… a style of learning that is extremely difficult to accomplish independently and passively. Research has shown again and again that this type of understanding requires active learning activities, inquiry-based labs, guided analysis, discussion, and group problem solving. All of which are impossible to accomplish within a book, which is why the AP1 book doesn’t even try. It is meant as a supplement to assist with building the foundational skills so students are better prepared for the active learning experiences which will build those skills so necessary for success in the course.</p>
    <p>In truth, the AP-1 book is the book I would want to use with my students. It is the book that I could send them home with to read a few pages, coupled with the video mini-lessons, so that we can use our valuable class time more productively in those active-learning experiences. It is not meant to be a textbook replacement, or a 320-page miracle for those taking the AP-1 exam without external preparation.</p>
    <p>I also believe that having an AP-1 style problem set would be valuable to teachers and students, as very few AP-1 style problems have been released for use in classrooms (likely because the sample exam was JUST released to instructors). Over the summer I’ll be working with other physics instructors to build up a set of public domain AP-1 style problems which we will make available to instructors and students. I can also foresee incorporating these into a future edition of the AP-1 book (perhaps as end-of-chapter problems) to provide further resources to students and instructors as we learn more about the actual AP-1 course.</p>
    <p>To summarize, though, I hate to see customers disappointed in APlusPhysics products, especially when the customer misses the intent of the product. I’m hoping this post clarifies the intent of the book, and I have also updated the book descriptions on Amazon and the iBooks store to call this out even more clearly and (hopefully) alleviate such potential disappointment in customers in the future.</p>
    <!-- Start Shareaholic Recommendations Automatic --><!-- End Shareaholic Recommendations Automatic --><img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/AnYv4TEnN2w" height="1" width="1"/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/AnYv4TEnN2w/" class='bbc_url' rel='nofollow external'>Source</a>
  16. FizziksGuy
    <p style="color: #333333; font-family: Arial; font-size: 13px; line-height: 17px;"> I’ve received quite a few requests over the past couple months, and especially the past couple days, asking if I knew of an “outline version” of the AP Physics 1 learning objectives, essential knowledge, etc., organized by topic. I already had this created from working on the <a href="http://aplusphysics.com/ap1">AP Physics 1 Essentials</a> book as a chapter outline/roadmap correlated to the new <a href="http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/2262.html">AP 1 course</a>, but had never bothered to put it in a user-friendly format to share. Well, until yesterday.</p>
    <p style="color: #333333; font-family: Arial; font-size: 13px; line-height: 17px;"> Here it is: <a href="http://aplusphysics.com/educators/AP1Outline.html/">http://aplusphysics.com/educators/AP1Outline.html/</a></p>
    <p style="color: #333333; font-family: Arial; font-size: 13px; line-height: 17px;"> I understand this may not be the order in which you’d teach the topics, but for me at least, this organization is much easier to wade through and make sense of than the current <a href="http://media.collegeboard.com/digitalServices/pdf/ap/ap-course-exam-descriptions/ap-physics-1-and-ap-physics-2-course-and-exam-description.pdf">AP Physics 1 and 2 Framework</a> document (in which I get easily lost in the 200+ pages). Perhaps it will be of use to you as well. Please note that you can drill down by clicking on the triangles to the left of the topics, i<span style="color: #000000;">t’s quite a big document if you expand it all out.</span></p>
    <p style="color: #333333; font-family: Arial; font-size: 13px; line-height: 17px;"> I’m planning on doing this for AP-2 as well, though I probably won’t have a chance to start on it until late July.</p>
    <!-- Start Shareaholic Recommendations Automatic --><!-- End Shareaholic Recommendations Automatic --><img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/kHYnj6tUV94" height="1" width="1"/>

    <a href="http://feedproxy.google.com/~r/PhysicsInFlux/~3/kHYnj6tUV94/" class='bbc_url' rel='nofollow external'>Source</a>
  17. FizziksGuy
    <p>It’s been awhile since I’ve gotten a good reflection up here. I’ve been swamped finishing up the <a href="http://aplusphysics.com/ap1">AP Physics 1 Essentials</a> book, getting it converted to all the various formats (Kindle, Nook, iBooks, etc.), while simultaneously continuing work on the interactive iPad version. As these projects are slowly beginning to conclude, I’ve been working on a presentation for the STANYS 2013 (Science Teachers Association of New York State) conference here in Rochester, NY. My presentation is on Utilizing Technology to Support Differentiated Learning, where I take a quick look at three strategies all designed to promote independent learning in students while providing opportunity for those students to self-differentiate by skill level in specific areas as well as interest.</p>
    <p>Since one of the three strategies involved flipping the classroom (along with self instruction and blogging), it seemed only right that I make a “flipped class video” version of the presentation. I’m still massaging the presentation, but here’s the first take:</p>
    <p><iframe width="480" height="360" src="//www.youtube.com/embed/DqdNzb0JelA" frameborder="0" allowfullscreen></iframe></p>
    <p><iframe width="480" height="360" src="//www.youtube.com/embed/gqf-414P-is" frameborder="0" allowfullscreen></iframe></p>
    <!-- Start Shareaholic Recommendations Automatic --><!-- End Shareaholic Recommendations Automatic --><img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/uoWE28hvCiM" height="1" width="1"/>

  18. FizziksGuy
    <p>Finally, after several years of research, organizing, outlining, re-outlining, writing, re-writing, writing again, and so on, I’m thrilled to announce that <a href="http://aplusphysics.com/ap1">AP Physics 1 Essentials: An APlusPhysics Guide</a> has been released!</p>
    <p><img style="float: right;" title="3d-book.png" src="http://aplusphysics.com/flux/wp-content/uploads/2013/08/3d-book.png" alt="3d book" width="430" height="314" border="0" /></p>
    <p>AP1 Essentials is jam-packed with the knowledge and content required for success on the AP Physics 1 Exam. More than 500 problems and deeper understanding questions, examples, and explanations. Tons of illustrations and diagrams to make the book clearer and enjoyable to read. And, of course, it’s interconnected with the <a href="http://aplusphysics.com">APlusPhysics</a> website, with video mini-lessons, online tutorials, student blogs, discussion forums, homework help, a video repository, downloads, you name it. I believe this will be an extremely valuable resource for students undertaking their AP Physics 1 courses beginning in fall 2014 when the course officially begins.</p>
    <p>Having said all that, though, I want to make a few items clear up front, as critics love to hammer certain points. Number one, this book is a resource (as are the videos, web tutorials, etc). Just that, and nothing more. It’s not intended to replace strong classroom instruction, student exploration, hands-on activities and labs, deeper problem solving practice, critical thinking, and writing as thinking. It’s another tool in the toolbox. The giant change in the AP Physics course is a focus on building true student understanding rather than plug-and-chug problem solving, something that is VERY difficult to do in a short easy-to-read book. Those skills need interactive discussions, refinement, challenges, and that’s where our job as teachers come in. This book was never intended as a textbook for the course, nor as a teacher replacement for a “do-it-yourself-at-home” situation. It’s designed to complement the course, driving home <strong>essential</strong> concepts and knowledge. True mastery will require much more, however. Applications both tangible and on-paper. Further deep dives into what these concepts really mean and how they intertwine. In short, strong professional instruction.</p>
    <p>Second, this is a review/guide book. For reasons of clarity, the organization of topics and chapters may not be what a student would typically see in a classroom setting. Physics topics interconnect, and it’s very difficult (and perhaps downright incorrect) to teach any given topic in isolation. What is kinematics without dynamics? How do you have a chapter on work and energy when the entire course is about energy? And for reasons of clarity, the order of chapters and material in chapters is not always what I would recommend as the order a teacher take in the classroom. Interconnectedness and a re-entrant strategy through a course is highly prized and effective, but deadly confusing in a review book. So the book is organized in such a fashion that a linear progression through the books hits the major topics in an order that requires a minimum of backtracking, yet may not be the most effective path to take in the classroom or the first-time through the material. Again, this is designed as a review / guide book, another weapon in the arsenal to build understanding, not a stand-alone solution.</p>
    <p>Third, students and teachers all have differing styles. Many teachers are moving to the “modeling” curriculum, which is strongly supported by the new AP-1 course. Many teachers are moving to “flipped classroom” strategies. Others teach with inquiry and project-based learning. None of these is the “silver bullet” that fixes all problems, and all of these have benefits and drawbacks. I think it’s important for each instructor to develop their own style that works for them, while also recognizing that each student is different, and what works for one student may not work for another. I try hard not to promote or criticize any single style of instruction. There’s a time and place for all of them. Instead, I recommend finding what works for you, and then each and every day, consider how you can stretch beyond what is comfortable to try something else and see if it works for you. Teaching is a process, not just a profession. To that end, I incorporate facets of modeling in the book and my classroom, I utilize some flipped class strategies in my classroom, though I wouldn’t call my classroom a “flipped class.” I utilize inquiry, project-based learning, and tons of other strategies, as I see fit to best meet the needs of my students and my goals for that day/lesson/unit. I even use direct instruction (oh my, he said it, didn’t he!!!) at times, though it is by no means the backbone of my courses. And this book is designed as a complement to any/all of them, not an answer to any single one.</p>
    <p>I wrote this book as a book I would want my students to have access to. Of course, it would be supplemented with a number of other resources. First off, I still promote the use of a legitimate full-length textbook. You may not use it everyday, but I think it’s important students learn how to read and utilize a complex text. In every class I teach, regardless of level, we work toward the day where we take one entire unit and work through it as an independent unit, where students are required to make use of the text productively, investigate a number of lab activities independently, and test their own understanding. Secondly, the problems in this book are designed to provide essential concept understanding. I highly recommend the use of additional problems sets, especially freely-available questions from past AP exams, as well as more open-ended and design-type questions where students aren’t just solving for a numerical answer, but are writing explanations as they think through problems and apply those basic concepts to new situations. That is a major focus of the AP paradigm shift, and I believe is beyond the scope of any single text to promote in isolation, as building these skills is a highly interactive process.</p>
    <p>So, a long-winded explanation of what to expect, and my recommendations on how I would use it. Just the $.02 of a physics teacher who loves his job. I want to again thank the many contributors to this work, and all the folks who have supported and encouraged this work. It’s been by far the hardest writing project I’ve undertaken, and I think it delivers on all of the goals we initially set out with. I hope you enjoy it!</p>
    <!-- Start Shareaholic Recommendations Automatic --><!-- End Shareaholic Recommendations Automatic --><img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/g9b9sVJI4bg" height="1" width="1"/>

  19. FizziksGuy
    <p>After many, many long hours and tons of great feedback from physics teachers across the globe, I’m thrilled to announce the AP Physics 1 Essentials, a guidebook / review book for the upcoming AP Physics 1 course, is due for release in late August. I began work on this project in the summer of 2010 when conversations at the AP Annual Conference in Washington, D.C., led to a number of different teachers talking about the need for a detailed course breakdown to support the change, followed by discussion of what the true cost of the change would be in terms of instructor hours, curriculum rewrites, resource revisions, etc. It was obvious there was going to be a need for a guidebook for the course, and my goal was to provide a short “everything you need to know” book that was easy-to-read, fun, engaging, and inexpensive so that students could pick this up as a guidebook/review book without having to purchase entirely new textbooks to support the changing course.</p>
    <p>I quickly picked up a following of fans eager to see the project succeed and more than willing to contribute what they could, from early draft versions of the Division of Content plans (which only vaguely resemble the final curriculum guides), to proposed and/or recommended formula sheets, to technical reviews, editing, “wish lists,” etc. I’ve been amazed at the positive response and helpfulness of so many, that has allowed this project to progress through multiple obstacles, from revised content and organizational issues through technical hurdles such as a corrupt book file caught nearly 80% into the rough draft. I guess this qualifies as checking the ”nothing worthwhile is easy” box on the project.</p>
    <p><img title="AP1Cover.jpg" src="http://aplusphysics.com/flux/wp-content/uploads/2013/07/AP1Cover.jpg" alt="AP1Cover" width="550" height="452" border="0" /></p>
    <p>I’m grateful to my family for allowing me the many hours early in the morning, late in the evening, and during the summer to work on this effort. As I write this, for example, I’m on vacation with my family. It’s almost 6 am, I’m watching the Allegheny River flow past, and just saw a bald eagle fly up the river, not 30 feet from where I sit typing. I also must thank the many physics instructors across the globe who have contributed in so many ways, from editing to hints to encouragement… but I need to say a special thank you to the APlusPhysics community. The website began as a tool to use in my own classroom, and quickly grew so popular that I felt compelled to continue to expand it at the request of its users. With more than 30,000 students using it EACH MONTH, I’ve been absolutely floored by the number of thank-you messages, letters of encouragement, and success stories contributed voluntarily by community members. You guys set me on this path, made the site and the books successful, and it’s your encouragement and support that have kept me at this project through the wee hours of the night and long hours of frustration.</p>
    <p>Moving on to the final product… I’m proud to say the book is finished. Sure, it has a few more edits to make, a few more tweaks here and there, but everything is on track for a late August 2013 release. My long-term goal was to have the book released one year before teachers began teaching the revised AP course, and it appears we’ll hit that deadline on the nose (with special thanks to the AP for delaying the change a year from the date I was originally told back in the summer of 2010). I’m hoping you find it valuable to your courses and studies. This book was written as the guidebook I would want my students to have for the course. Not a full standard physics textbook, because my students don’t learn and fully read their physics textbook (except in snippets), but rather a book designed to be used as written, read AND understood, with tons of example problems and solutions.</p>
    <p>Thank you so much for your tremendous support. I hope you enjoy AP Physics 1 Essentials as much as I enjoyed the opportunity to work with you and so many other amazing people on this project.</p>
    <p>Make it a great day!</p>
    <!-- Start Shareaholic Recommendations Automatic --><!-- End Shareaholic Recommendations Automatic --><img src="http://feeds.feedburner.com/~r/PhysicsInFlux/~4/DnWJQ6JEW_o" height="1" width="1"/>


Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

  • Create New...