Jump to content

Flipping Physics

Educators
  • Posts

    470
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by Flipping Physics

  1. Name: An Introductory Relative Motion Problem Category: Kinematics Date Added: 29 September 2014 - 02:58 PM Submitter: Flipping Physics Short Description: None Provided Using a toy car and a piece of paper we can visualize and understand relative motion by doing an introductory problem. Content Times: 0:13 Reading the problem 0:42 Translating the problem 1:38 Visualizing the problem 2:24 The vector diagram and equation 3:14 Isn’t this vector addition? 3:30 Solving for the velocity of the car with respect to the Earth 4:44 Solving for the direction of the car with respect to the Earth 6:32 Part ( How far did the car travel? 7:15 New similar triangle with displacements 8:15 Solving part ( 9:58 Solving part © How long did the car travel? 10:58 An alternate solution to part © 11:36 Yes, it did take about 15 seconds Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! Next Video: An Introductory Relative Motion Problem with Vector Components Previous video: Introduction to Relative Motion using a Quadcopter Drone 1¢/minute View Video
  2. Name: Introduction to Relative Motion using a Quadcopter Drone (UAV) Category: Kinematics Date Added: 23 September 2014 - 03:21 PM Submitter: Flipping Physics Short Description: None Provided Two vehicles driven at different speeds parallel to one another is a great one dimensional way to introduce relative motion. When viewed from above using a quadcopter drone, it is even better! Thanks Aaron Fown of View Video
  3. Name: How to Wear a Helmet a PSA from Flipping Physics Category: Momentum and Collisions Date Added: 18 September 2014 - 03:36 PM Submitter: Flipping Physics Short Description: None Provided Wearing a helmet is all about impulse, change in momentum and the force of impact. This video illustrates why you should secure your helmet to your head. Thank you very much to Colton and Jean Johnson who said yes when I asked them if I could film myself riding my bike off their dock. Colton also said, “In my 75 years of living, that has got to be the strangest request I have ever received.†Thank you also to Chris Palmer and Larry Braak for being my on-site camera operators. Content Times: 0:19 Are you wearing your helmet? 0:53 Riding my bike off the dock into the lake. 2:15 The helmet falls off 2:40 Newton’s 2nd Law 4:08 Impulse approximation 5:01 Which variables are NOT dependent on helmet status 6:23 Impulse 7:01 What variables does wearing a helmet change 7:57 This one time I was riding my bike … 8:50 A contrasting story Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! More Flipping Physics Videos: The Classic Bullet Projectile Motion Experiment & Dropping Dictionaries Doesn’t Defy Gravity, Duh! 1¢/minute View Video
  4. Name: Demonstrating the Components of Projectile Motion Category: Kinematics Date Added: 12 August 2014 - 10:30 AM Submitter: Flipping Physics Short Description: None Provided Projectile motion is composed of a horizontal and a vertical component. This video shows that via a side-by-side video demonstration and also builds the velocity and acceleration vector diagram. Content Times: 0:14 Reviewing Projectile Motion 1:00 Introducing each of the video components 1:40 Building the x-direction velocity vectors 2:15 Building the y-direction velocity vectors 3:12 Combing velocity vectors to get resultant velocity vectors 3:41 Showing how we created the resultant velocity vectors 4:47 Adding acceleration vectors in the y-direction 5:28 Adding acceleration vectors in the x-direction 5:45 Completing the Velocity and Acceleration diagram 5:58 The diagram floating over clouds, i mean, why not, eh? Want View Video
  5. Name: The Classic Bullet Projectile Motion Experiment Category: Kinematics Date Added: 20 June 2014 - 01:32 PM Submitter: Flipping Physics Short Description: None Provided One bullet is fired horizontally and simultaneously a second bullet is dropped from the same height. Neglecting air resistance and assuming the ground is level, which bullet hits the ground first? Content Times: 0:15 Reading the problem 0:53 Listing the known variables 1:59 Determining the answer 2:37 Demonstrating the answer 3:00 Isn't one moving faster? 3:52 The Review Want View Video
  6. Name: A Range Equation Problem with Two Parts Category: Kinematics Date Added: 19 June 2014 - 01:20 PM Submitter: Flipping Physics Short Description: None Provided Mr.p throws a ball toward a bucket that is 581 cm away from him horizontally. He throws the ball at an initial angle of 55° above the horizontal and the ball is 34 cm short of the bucket. If mr.p throws the ball with the same initial speed and the ball is always released at the same height as the top of the bucket, at what angle does he need to throw the ball so it will land in the bucket? Content Times: 0:14 Reading the problem 1:01 Why we can use the Range Equation 2:15 Listing what we know for the first attempt 3:06 Solving for the initial speed 4:26 Solving for the initial angle 5:45 Putting the ball in the bucket 6:15 There are actually two correct answers 6:44 Getting the ball into the basket Want View Video
  7. Name: Deriving the Range Equation of Projectile Motion Category: Kinematics Date Added: 16 June 2014 - 02:16 PM Submitter: Flipping Physics Short Description: None Provided Learn how to derive the Range of Projectile. The Horizontal Range of a Projectile is defined as the horizontal displacement of a projectile when the displacement of the projectile in the y-direction is zero. Content Times: 0:12 Defining Range 0:32 Resolving the initial velocity in to it's components 1:49 Listing our known values 2:49 Solving for range in terms of change in time 3:30 Solving for the change in time in the y-direciton 5:18 Combining two equations 6:03 The Sine Double Angle Formula 6:53 The Review Want View Video
  8. Name: Understanding the Range Equation of Projectile Motion Category: Kinematics Date Added: 10 June 2014 - 02:03 PM Submitter: Flipping Physics Short Description: None Provided The Horizontal Range of a Projectile is defined as the horizontal displacement of a projectile when the displacement of the projectile in the y-direction is zero. This video explains how to use the equation, why a launch angle of 45° gives the maximum range and why complimentary angles give the same range. Content Times: 0:16 Defining Range 0:50 How can the displacement in the y-direction be zero? 1:21 The variables in the equation 2:09 g is Positive! 3:05 How to get the maximum range 4:17 What dimensions to use in the equation 5:19 The shape of the sin(θ) graph 6:17 sin(2·30°) = sin(2·60°) 7:35 A graph of the Range of various Launch Angles 8:18 The Review Want View Video
  9. Name: Nerd-A-Pult #2 - Another Projectile Motion Problem Category: Kinematics Date Added: 03 June 2014 - 12:29 PM Submitter: Flipping Physics Short Description: None Provided This time in our projectile motion problem, we know the displacement in the y-direciton and we are solving for the displacement in the x-direciton. We could you use the quadratic formula and I even show you how, however, I also show you the way I recommend doing it which avoids the quadratic formula. Content Times: 0:14 Reading the problem 0:55 Comparing the previous projectile motion problem to the current one 1:16 Breaking the initial velocity in to its components 1:44 Listing the givens 2:27 Beginning to solve the problem in the y-direction 3:08 The Quadratic Formula! 5:49 How to solve it without using the quadratic formula. Solve for Velocity Final in the y-direction first 6:59 And then solve for the change in time 8:12 Solving for the displacement in the x-direction 9:01 Showing that it works 9:43 The Review Want View Video
  10. Name: Nerd-A-Pult - Measuring Initial Velocity Category: Kinematics Date Added: 27 May 2014 - 09:29 PM Submitter: Flipping Physics Short Description: None Provided We need to know the initial velocity of a projectile leaving the Nerd-A-Pult. That means we need the initial speed and the initial angle. This video shows exactly how I measured both. Content Times: 0:30 Taking measurements to determine the launch angle 1:20 Finding a triangle 2:02 Defining the angles 3:35 Determining the launch angle 4:38 Using the frame rate to find the change in time 5:08 Measuring the distance travelled during the first frame 6:12 Why initial speed and not initial velocity? 6:39 Determining the average launch speed View Video
  11. Name: Nerd-A-Pult - An Introductory Projectile Motion Problem Category: Kinematics Date Added: 23 May 2014 - 02:05 PM Submitter: Flipping Physics Short Description: None Provided An introductory projectile motion problem where you have to break the initial velocity vector in to its components before you can work with it. The Nerd-A-Pult is the perfect tool for showing projectile motion. Content Times: 0:02 Introducing the Nerd-A-Pult 0:43 Demonstrating the marshmallow capabilities of the Nerd-A-Pult 1:18 Reading the problem 2:26 Starting to solve the problem 3:03 What do we do with the initial velocity? 3:45 Solving for the initial velocity in the y-direction 4:27 Solving for the initial velocity in the x-direction 5:13 Deciding which direction to start working with 5:38 Solving for the change in time in the x-direction 6:34 Solving for the displacement in the y-direction 7:54 Proving that our answer is correct 8:58 The Review View Video
  12. Name: A Brief Look at the Force of Drag using Numerical Modeling (or The Euler Method) Category: Dynamics Date Added: 22 May 2014 - 05:01 PM Submitter: Flipping Physics Short Description: None Provided This is how you include air resistance in projectile motion. It requires the Drag Force and Numerical Modeling (or the Euler Method). It is also very helpful to use a spreadsheet to do the calculations. I prove a statement from a previous projectile motion problem video, "Air resistance decreases the x displacement of the ball by less than 1 cm." Content Times: 0:22 The statement this video proves 1:01 The basic concept of air resistance 1:54 The Free Body Diagram 2:20 The Drag Force Equation 3:13 Information about the Lacrosse Ball 4:03 The Drag Coefficient 4:55 The Density of Air 5:18 How the Drag Force affects the motion 5:58 The basic idea of Numerical Modeling (or the Euler Method) 6:50 Solving for the acceleration in the x direction 8:53 Solving for the final velocity in the x direction 9:54 Solving for the final position in the x direction 11:41 Entering the Lacrosse Ball information into Excel 13:34 Solving for the Drag Force in x direction in Excel 14:29 Solving for the acceleration in the x direction in Excel 14:58 Solving for the final velocity and final position in the x direction in Excel 15:46 Solving for the acceleration in the y direction 17:21 Solving for all the variables in the y direction in Excel 19:13 Click and Drag Copy. Harnessing the Power of Excel! 19:43 Understanding the numbers in Excel 20:35 Solving for the decrease in the x displacement caused by the Drag Force View Video
  13. Name: (Part 2 of 2) An Introductory Projectile Motion Problem with an Initial Horizontal Velocity Category: Kinematics Date Added: 22 May 2014 - 04:57 PM Submitter: Flipping Physics Short Description: None Provided Now that we have dropped the ball into the bucket, we can determine the final velocity of the ball right before it strikes the bucket. Don't forget that velocity is a vector and has both magnitude and direction. Yep, component vector review! Content Times: 0:34 Finding the final velocity in the y direction. 1:52 We need to find the hypotenuse! 2:28 Finding the final velocity in the x direction. 2:57 Finding the magnitude of the final velocity. 4:06 Finding the direction of the final velocity. 5:08 The number answer. 5:52 Visualizing the answer. 6:28 Why is the ball always right below mr.p's hand? 7:07 Doesn't the ball travel farther than mr.p's hand? 7:33 The Review. View Video
  14. Name: (Part 1 of 2) An Introductory Projectile Motion Problem with an Initial Horizontal Velocity Category: Kinematics Date Added: 22 May 2014 - 04:49 PM Submitter: Flipping Physics Short Description: None Provided Can you drop a ball from a moving vehicle and get it to land in a bucket? You can using Physics! In this video we solve an introductory projectile motion problem involving an initial horizontal velocity and predict how far in front of the bucket to drop the ball. Content Times: 0:17 Reading the problem. 0:41 Visualizing the problem. 1:18 Translating the problem. 2:31 Converting from miles per hour to meters per second. 3:10 Two common mistakes about projectile motion givens. 4:29 Beginning to solve the problem. 5:13 Solving for the change in time in the y-direction. 6:22 Solving for the displacement in the x-direction. 7:29 Video proof that it works. 8:14 Air resistance? 9:09 In our next lesson... View Video
  15. Name: Introduction to Projectile Motion Category: Kinematics Date Added: 22 May 2014 - 04:44 PM Submitter: Flipping Physics Short Description: None Provided My strategy for solving any projectile motion problem. You need to split the variables in to the x and y directions and solve for time. Sounds simple and it really is, usually. Content Times: 0:11 Review of Linear Motion Examples 0:57 Introducing Projectile Motion! 1:48 Basic strategy for solving any projectile motion problem 2:06 The y-direction (UAM) 3:22 The x-direction (constant velocity) 4:36 How many knowns do you need in each direction? 5:41 What do we usually solve for? 6:12 The Review View Video
  16. Name: A Visually Complicated Vector Addition Problem using Component Vectors Category: Kinematics Date Added: 22 May 2014 - 04:43 PM Submitter: Flipping Physics Short Description: None Provided This visually confusing tip-to-tail vector addition problem can be solved just like our previous problems. Give your vectors names, draw a vector diagram, break vectors in to components, redraw the vector diagram, create a data table, add columns and solve using basic trig. Content Times: 0:14 Reading, visualizing, and translating the problem. 1:13 Drawing the vector diagram. 2:06 Breaking vector C in to its components. 3:22 Redrawing the vector diagram (twice). 4:16 Creating the data table. 4:53 Determining the components of the resultant vector, R. 5:33 Solving for vector R. 7:13 Visualizing the entire problem. 7:36 The Review. View Video
  17. Name: Using a Data Table to Make Vector Addition Problems Easier Category: Kinematics Date Added: 22 May 2014 - 04:42 PM Submitter: Flipping Physics Short Description: None Provided Any vector addition problem can be made easier by using a data table; no matter how many vectors. Content Times: 0:13 Reviewing the problem. 0:46 Starting the Data Table. 1:13 Filling in the table: Vector A 2:02 Filling in the table: Vector C 2:33 Filling in the table: Vector B 3:11 Finding the Components of the Resultant Vector, R. 3:59 The Review View Video
  18. Name: Introductory Vector Addition Problem using Component Vectors Category: Kinematics Date Added: 22 May 2014 - 04:40 PM Submitter: Flipping Physics Short Description: None Provided A simple, introductory vector addition problem that combines the concepts of vectors, cardinal directions, tip-to-tail vector addition and component vectors. Content Times: 0:14 Reading and understanding the problem. 1:25 Drawing the Vector Diagram. 2:28 A common mistake about where to place the arrowhead on the Resultant Vector. 3:39 This is NOT a Vector Diagram! 4:34 How NOT to solve the problem. 5:12 Breaking vector B in to its component in the y direction. 6:02 Breaking vector B in to its component in the x direction. 6:52 Redrawing the Vector Diagram using the components of vector B. 7:30 Finding the direction of our Resultant Vector. 8:35 Finding the magnitude of our Resultant Vector. 9:47 Summarizing the entire problem in 27 seconds. 10:19 The review. View Video
  19. Name: Introduction to Vector Components Category: Kinematics Date Added: 22 May 2014 - 04:39 PM Submitter: Flipping Physics Short Description: None Provided Components of Vectors are an important piece to understand how vectors work. In this video we learn how to "break" or "resolve" vectors in to their component pieces. Content Times: 0:14 The example displacement vector d 0:44 Finding the y component of vector d 2:17 Finding the x component of vector d 3:18 What does it mean to be a component of a vector? 4:14 A common question about vector components 4:51 Showing mathematically that the vector components add up to the vector 6:48 Explaining how d in the x direction shows both magnitude and direction 7:57 The Review View Video
  20. Name: How to use Cardinal Directions with Vectors Category: Kinematics Date Added: 22 May 2014 - 04:37 PM Submitter: Flipping Physics Short Description: None Provided Many students struggle with understanding Cardinal Directions. So this is a very basic video describing how to use cardinal directions with vectors. Content Times: 0:12 Previous example summary 0:48 Two suggestions for working with Cardinal Directions 1:58 East of North = East "from" North 2:18 The 8 possible direcitons 3:51 Two equivalent ways to describe the same vector 4:51 NE, SE, SW, and NW 5:24 The review View Video
  21. Name: Introductory Tip-to-Tail Vector Addition Problem Category: Kinematics Date Added: 22 May 2014 - 04:36 PM Submitter: Flipping Physics Short Description: None Provided This is a very basic introductory to Tip-to-Tail Vector Addition Problem using a motorized toy car that I made. I don't just talk about it in a general sense, I actually show the different vectors being added together. Content Times: 0:16 Problem introduction 0:36 Determining the velocity of the track 1:43 Defining our givens 3:08 Visual representation of our vectors 3:56 Slow Velocity Racer on the track 4:20 Drawing the resultant vector 5:03 Mathematically finding the magnitude of the resultant velocity vector 6:28 Mathematically finding the direction of the resultant velocity vector 8:45 Summarizing and understanding our results 9:20 49 + 42 = 65? 10:57 The Review View Video
  22. Name: Introduction to Tip-to-Tail Vector Addition, Vectors and Scalars Category: Kinematics Date Added: 22 May 2014 - 04:35 PM Submitter: Flipping Physics Short Description: None Provided This is a very basic introduction to Tip-to-Tail Vector Addition using a motorized toy car that I made. Also included is an introduction to Vectors and Scalars, their definitions and some variable examples of Vectors and Scalars. Content Times: 0:11 Slow Velocity Racer! 0:48 Determining the speed of Slow Velocity Racer! 1:55 Which track for Slow Velocity Racer to move the fastest? 2:54 How fast will Slow Velocity Racer move between the two tracks? 3:18 How fast will Slow Velocity Racer move on the top track? 4:03 Tip-to-Tail Vector Addition 5:45 Defining Vectors 6:15 Defining Scalars 6:38 Variable Examples of Vectors 7:02 Variable Examples of Scalars 7:28 Montage of Examples of Scalars 8:18 Defining Magnitude 9:20 Scalars can be negative 9:56 The Review View Video
  23. Name: Common Free-Fall Pitfalls Category: Kinematics Date Added: 22 May 2014 - 04:32 PM Submitter: Flipping Physics Short Description: None Provided Yes, there are mistakes that many people make when it comes to free-fall acceleration problems. I dispel many misconceptions and explain both why people think they are true and why they actually aren't. Oh, and there are some special effects too! Content Times: 0:14 Review of the Basics of Free-Fall 1:04 1st Misconception - The acceleration on the way up is positive 2:09 2nd Misconception - The initial velocity going upward is zero 2:45 3rd Misconception - A thrown ball will accelerate faster than a dropped ball 4:00 Reminder - Velocity at the top is zero 4:29 4th Misconception - The acceleration at the top is zero 6:36 Review View Video
  24. Name: Don't Drop Your Camera 5.0 Seconds After Liftoff Category: Kinematics Date Added: 22 May 2014 - 04:31 PM Submitter: Flipping Physics Short Description: None Provided An advanced free-fall acceleration problem involving 2 parts and 2 objects. Problem: You are wearing your rocket pack (total mass = 75 kg) that accelerates you upward at a constant 10.5 m/s^2. While preparing to take pictures of the beautiful view, you drop your camera 5.0 seconds after liftoff. 5.0 seconds after you drop the camera, (a) what is the camera's velocity and ( how far are you from the camera? Content Times: 0:17 Reading the problem 1:26 Understanding the problem using a picture 2:10 Listing every known variable 3:22 Which part do we start solving first? 3:47 What do we solve for in part 1? 4:46 That's a lot of subscripts, why? 5:24 Starting to solve the problem. Finding the final velocity for part 1. 6:32 Solving for the final velocity for part 2 for the camera 7:46 Why is the final velocity for part 2 for the camera positive? 9:10 Finding the displacement for part 2 for the camera 9:55 Finding the displacement for part 2 for you 10:42 Finding the distance between you and the camera at the very end 11:27 The Review Want Lecture Notes? Next Video: Introduction to Tip-to-Tail Vector Addition, Vectors and Scalars Previous Video: Dropping Dictionaries Doesn't Defy Gravity, Duh! View Video
  25. Name: Dropping Dictionaries Doesn't Defy Gravity, Duh! Category: Kinematics Date Added: 22 May 2014 - 04:29 PM Submitter: Flipping Physics Short Description: None Provided Video Proof of the Mass Independence of the Acceleration due to Gravity and a little dancing. Content Times: 0:14 Reviewing the mass independence of free-fall acceleration. 0:56 1 book 1:36 What's a boom box? 2:07 All 4 videos together 2:31 We can dance if we want to 3:25 Thank you very much for learning with me today View Video
×
×
  • Create New...