Jump to content

Search the Community

Showing results for tags 'Force'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Physics News
    • Announcements
    • News Headlines
    • Physics In Action Podcast
  • General
    • Introductions
    • APlusPhysics Alumni
    • Site Suggestions & Help
    • Homework Help
    • Labs and Projects
    • Break Room
    • TV & Movie Physics
    • Video Discussions
    • STEM Discussion
  • Course Meeting Rooms
    • Honors and Regents Physics
    • AP Physics 1/2
    • AP Physics C

Categories

  • APlusPhysics Guides
  • Books
  • AP Physics 1/2
    • General / Other
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Impulse and Momentum
    • WEP
    • Rotational Motion
    • Oscillations
    • Fluids
    • Thermodynamics
    • Electrostatics
    • Circuits
    • Magnetism
    • Waves
    • Modern Physics
    • AP Exam Prep
  • AP Physics C
    • General / Other
    • Kinematics
    • Dynamics
    • WEP
    • Momentum & Impulse
    • Rotation
    • Gravitation
    • Oscillations
    • Electrostatics
    • Circuits
    • Magnetism
    • Induction
    • Exam Prep
  • Regents / Honors Physics
    • General / Other
    • Math Review
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Momentum & Impulse
    • Work, Energy, Power
    • Electricity
    • Magnetism
    • Waves
    • Modern Physics
    • Exam Prep
  • Simulations / Models

Blogs

  • Physics in Flux
  • Mr. Powlin
  • Blog willorn
  • Blog awalts
  • Santa Claus is REAL!!!
  • Blog coltsfan
  • Blog rWing77IHS
  • Blog soccergirl
  • Blog hoopsgirl
  • Blog caffeinateddd
  • Blog Sbutler93
  • Blog PhysicsInAction
  • Blog bazinga
  • Blog WoWAngela
  • Blog probablykevin
  • Blog NewFoundGlory
  • Blog DANtheMAN
  • Blog Soccerboy2003D
  • Blog moe.ron
  • Blog challengerguy
  • Blog bxh8620
  • Blog darkassassin
  • Blog ohyeahphysics
  • Radio
  • Blog jade
  • North Salem High School AP-B Physics Blog
  • Blog landshark69
  • Blog Tiravin
  • Blog flipgirl
  • questioning everything
  • emma123321's Blog
  • Blog goNavy51
  • Blog MrPhysics
  • Sara T's Blog
  • hollyferg's Blog
  • Blog lemonlime799
  • Stardust's Blog
  • Blog lacrosse12
  • Blog xcrunner92
  • Blog Bob Enright
  • Blog Swagmeister11
  • Blog ThatGuy
  • Blog Kapow
  • Blog Doctor Why
  • Blog [not]TheBrightestBulb
  • Blog Wunderkind5000
  • Blog daboss9
  • Blog OffInMyOwnWorld
  • Fg = (Fizzix)(Girl)
  • Blog 136861
  • Blog Albert Hawking
  • Blog gburkhart
  • Blog AldTay
  • Kat's corner
  • Danielle17's Blog
  • Mermaids Lagoon
  • RaRaRand
  • rtsully829's Blog
  • Patchy's Blog
  • skyblue22's Blog
  • HaleighT's Blog
  • dwarner's Blog
  • JBrown3's Blog
  • Christina H.'s Blog
  • Do cats always land on their feet?
  • LilBretz's Physics Blog
  • jay day
  • Blog smithr7
  • Blog keeth
  • PepperJack's Blog
  • jbilodeau's Blog
  • Physics Blog
  • Bugs Blog
  • blog 1
  • Blog jmcpherson82
  • Blog HannahG
  • Blog AlphaGeek
  • Blog sarabuckbee
  • Blog mathgeek15
  • Yay physics!
  • Blog goalkeeper0
  • Blog lshads
  • Dodgeball
  • Blog caffeinefueledphysics
  • Blog midnightpanther
  • CMaggio's Blog
  • Blog bdavis
  • Blog MrMuffinMan
  • Blog denverbroncos
  • Blog DavidStack
  • Blog CharlieEckert
  • Blog SwagDragon15
  • Blog jfrachioni
  • Blog PostMeister
  • NevinO's Blog
  • José P's Blog
  • JDiddyInDaHouse's Blog
  • npignato's Blog
  • Above & Beyond
  • AndrewB's Blog
  • The Awesome Blog
  • Pineapple Grotto
  • physics blog
  • JamesWil's Blog
  • How does Iron Man fly?
  • KC12
  • Physics of Cheerleading
  • Elijah35's Blog
  • Physics?
  • Blog HannahG
  • mgiamartino's Blog
  • ericaplukas' Blog
  • as151701's Blog
  • Physics yeah!
  • TayCro
  • ACorb16's Blog
  • Patricks Blog with friends
  • Patricks Blog with friends
  • CM YAAAAAHHHHH
  • Ben's Post
  • Wise words from Leon Sandcastle
  • What Is A CT Scan
  • Physics Blog
  • Physics Of Videogames
  • ClarkK's Blog
  • Darts
  • Euclidean Blog
  • jfrachioni's Blog
  • Momentumous' Blog
  • goalkeeper0's Blog
  • The Blog of SCIENCE
  • physics on roller coasters
  • physics on swimming
  • physics on softball
  • physics on bike riding
  • The Real Blog, the Best Blog
  • RTB24's Blog
  • Physics!
  • PHYSICS courtesy of Shabba Ranks.
  • physicsguy#1
  • Walsherific Blogging!
  • Give me you're best shot fysics
  • Tired and a little dehydrated
  • bazinga818's Blog
  • TerminalVelociraptor
  • ThatBlogOverThere
  • Blog Having Nothing to do with Physics
  • Sarcasm And Some Physics Too
  • MarcelaDeVivo's Blog
  • martella6's Blog
  • Physics in the real world
  • abbyeschmitz's Blog
  • michaelford3's Blog
  • imani2014's Blog
  • kpluk3's Blog
  • hannahz's Blog
  • Celisse_R's Blog
  • Stephanie528's Blog
  • reedelena's Blog
  • Brittany16's Blog
  • OksanaZ's Blog
  • ihsseniorhill
  • Lynn152461's Blog
  • bailliexx13's Blog
  • hann129's Blog
  • Celeena's Blog
  • necharles17's Blog
  • Ben Shelton's Blog
  • cierraw's reflection on physics class
  • Amanda's Blog
  • Abbeys Blog
  • dspaker's Blog
  • Chanae's Blog
  • Halo Physics
  • Sandra's Blog
  • anna's Blog
  • SabrinaJV's Blog
  • kenzie10's Blog
  • hecht0520's Blog
  • DianeTorres' Blog
  • sputnam14
  • mitchell44's Blog
  • physics
  • happytoast's Blog
  • Basketball44
  • physics around us
  • Theo Cup
  • Merkel's Blog
  • claremannion's Blog
  • maddiejeanne15's Blog
  • Basketball Physics
  • PfFlyer17
  • jackbowes10's Blog
  • mt8397's Blog
  • zach_memmott11's Blog
  • emvan2's Blog
  • michaela1707's Blog
  • Faith DeMonte
  • Physics with Marisa
  • kenzie10's Blog
  • Kirch's Blog
  • theantonioj's Blog
  • Joe13's Blog
  • Zachary Denysenko's Blog
  • Ficher Chem Co. Ltd: Crystal meth, Buy Research Chemicals Online
  • Celisse_R's Blog
  • Regents Physics
  • cyan1's Blog
  • Reflection on Physics Class (3rd quarter)
  • physicsgal1's Blog
  • cgl15's Blog
  • Beginner Blogger
  • Reflections on blogs
  • Fezziksphysics' Blog
  • Physics824
  • PhunPhysics's Blog
  • pinkblue2's Blog
  • aphysics15's Blog
  • kphysics15
  • GoArrows15's Blog
  • mphysics' Blog
  • physicsislife's Blog
  • A High Schooler's HP Blog
  • kphysics' Blog
  • dls715's Blog
  • Muchfungophysics!'s Blog
  • apfphysics15's Blog
  • Hot Dog! Is that science?!
  • purple15's Blog
  • sciencegirl123's Blog
  • atrestan15's Blog
  • Seriously, was there homework?
  • #Physicsislife
  • billnyethescienceguy's Blog
  • Novice Blogger
  • Science4Life's Blog
  • adeck15's Blog
  • physicsisawesome's Blog
  • Rules on How to Rule the Kingdom of Physics
  • Rules on How to Rule the Kingdom of Physics
  • Sam's Blogging Blog of Blogginess
  • ck's Blog
  • jgalla's Blog
  • thisregistrationsucks' Blog
  • AP Physics C - The Final Frontier
  • Playground of the Mind with Dan
  • Mike V.'s Physics Blog
  • ariannatorpey's Blog
  • Michael783's Blog
  • Michael783's Blog
  • JessByrnes717's Blog
  • JessByrnes717's Blog
  • kmiller0212's Blog
  • The Kowalski Dimension
  • joshdeutsch's Blog
  • tuttutgoose's Blog
  • tuttutgoose's Blog
  • Kylee's Physics Blog
  • ItownEagl3's Blog
  • Elenarohr's Blog
  • james000345's Blog
  • Blogging Assignment
  • Lia's blog
  • KalB's Blog
  • NatalieB's Blog
  • kyraminchak12's Blog
  • t_hess10's Blog
  • Bootsy:)'s Blog
  • Ameliaâ„¢'s Blog
  • moritz.zoechling's Blog
  • Wibbly Wobbly Timey Wimey Physics
  • Hannah K's Blog:-)
  • That AP Physics C blog doe
  • Mandy's Blog
  • Quinn's Blog
  • jacmags' Blog
  • kelsey's Blog
  • Haley Fisher Blog
  • Jman612's Blog
  • A-Wil's Physics C Blog
  • morganism2.0's Blog
  • mdeng351's Blog
  • heather_heupel's Blog
  • CoreyK's Blog
  • isaacgagarinas' Blog
  • Mary_E27's Blog
  • zach_m's Blog
  • D Best Blog posts
  • Grace21's Blog
  • Grace21's Blog
  • ally_vanacker's Blog
  • natemoore10's Blog
  • The Physics (or lackthereof) of The Hobbit
  • Fee-oh-nuh's Blog
  • Physcics in eating food
  • ErikaRussell's Blog
  • Djwalker06's Blog
  • aschu103's Blog
  • Evan Plattens blog
  • danvan13's Blog
  • AnnieB's Blog
  • Jwt's Blog
  • aj31597's Blog
  • miranda15's Blog
  • miranda15's Blog
  • Monigle123's Blog
  • The Physics of a Slapshot
  • devon000885's Blog
  • devon000885's Blog
  • jakeb168 blog
  • physics of my life
  • Danny's Blog
  • Matts blog
  • Ryanz18's Blog
  • Ryanz18's Blog
  • Alyssa's Blog
  • Tuskee's Blog
  • Physics in Running!
  • konneroakes' Blog
  • B-Reezy64's Blog
  • WanidaK's Blog
  • Physics in falling
  • Physics in falling
  • Physics everywhere
  • The Race
  • NYC physics
  • JamesG's Blog
  • Megan's Blog
  • mikedangelo13's Blog
  • Z824's Blog
  • How Gwen Stacy Died (Physics Version)
  • Harrison's Blog
  • Kgraham30's Blog
  • Physics in the Modern World
  • jazmine2497's Blog
  • Colby's Blog
  • Colby's Blog
  • All da Physics
  • Zmillz15's Blog
  • Walter Lewin
  • fminton20's Blog
  • Ryanz18's Blog
  • Ryanz18's Blog
  • Antonio Morales
  • PaperLand
  • stargazer14
  • Hannah's Blog
  • Just Some Thoughts on Physics
  • Nate's Blog
  • Anna's APC Blog
  • JesseLefler
  • A Diver's look at physics
  • Physic
  • IVIR GREAT's Physics
  • Physics Blog
  • Z's Blog
  • ZZ's Blog
  • Alpha Baker Gamma
  • Phyzx
  • a blog about physics
  • Ashley's Blog
  • Life
  • State of the Art Novel InFlowTech 1Gearturbine RotaryTurbo 2Imploturbocompressor One Compression Step
  • Nicole's Blog
  • Phys-X
  • Fun With Physics
  • Physics in the Real World
  • Physics and Video Games
  • Physics C and How it Relates to Me
  • My Life, Baseball and Physics
  • My Journey in Physics
  • CVs Blog
  • Blogs
  • Kerbal Space Program: Nicholas Enterprises
  • Actual Physics from an Actual Physics Student
  • A Blog
  • World of Physics
  • Kayla's Blog
  • So, I guess I signed up for another year of ap physics...
  • Physics take two
  • Dissertation writing service
  • eclark
  • Escort Directory
  • Physics of Video Games
  • An Physic
  • Paramount California University
  • Jeremy Walther
  • The Physics of Swimming
  • Physics Blog
  • RK's Physics Blog
  • AP Physics C Student Blog
  • jrv12's physics blog
  • Captain's Log
  • Physics blogs
  • Important Tips You Should Consider When Searching For A Dissertation Topic
  • About me
  • The Physics Behind Life
  • Aaron's Coverage
  • Home is Where Your Displacement is Zero
  • Dog with a Blog
  • Don't Stop Me Now
  • CLICKBAIT TITLE
  • Soccer News
  • A Queue of Posts
  • Dat Music Kid's Blog
  • Getting the most out of studying
  • Bogart's Blogging Bonanza
  • Foul ball physics
  • GoDissertationHelp
  • Affordable Assignment Help Services for Students
  • super hair pieces
  • Ficher Chem Co. Ltd: Buy crystal meth online
  • Difference between townhomes and townhouses?
  • John Quinn
  • Inter Mock Test Series
  • kalyan matka
  • Forex dedicated server
  • Satta matka result
  • kalyan matka
  • matka result
  • HIPAA Training
  • How to report an accident in 6 simple steps
  • DPboss
  • Naruto Party Supplies | Naruto Party Decorations
  • Definition of Speech Synthesis and Its Applications
  • Matka India
  • Matka Play
  • spouse visa australia
  • Legal translation Dubai
  • Satta Matka
  • You need to lay of and relax to get better mental health.
  • Matka Result
  • Matka Result
  • Kolkata Fatafat Tips
  • Improving your mental health
  • Matka
  • Satta Matta Matka
  • What is Offshore? Is it Legal?
  • A Shining Blog in Darkness
  • WHY DPBOSS IS MOST SEARCHED KEYWORDS INTO SATTA MATKA INDUSTRY?
  • Buy Travel Gear UK
  • Satta Matka Result
  • Delhi Satta King
  • Amar Satta Matka
  • Drishti Yoga School
  • Matka
  • Sex Is an Emotional Bonding Mechanism for Men
  • Are Coworking spaces worth the expenditure?
  • Trusted Online Matka app
  • SMM Panel India
  • How to Choose the Right Matka Result Center
  • Importance and Popularity of the Game

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Biography


Location


Interests


Occupation

  1. Name: Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions Category: Oscillations Date Added: 2018-04-15 Submitter: Flipping Physics Identifying the spring force, acceleration, and velocity at the end positions and equilibrium position of simple harmonic motion. Amplitude is also defined and shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Identifying the 3 positions 0:43 Velocity 1:43 Spring Force 2:14 Amplitude 2:30 Acceleration 3:22 Velocity at position 2 4:12 Is simple harmonic motion also uniformly accelerated motion? Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Next Video: Horizontal vs. Vertical Mass-Spring System Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Please support me on Patreon! Thank you to Jonathan Everett, Sawdog, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions
  2. I've been extremely curious on how much Physics Education professional dart players have on shooting? It's quite impressive to throw 3 darts in such a small group repeatedly without any fixed sights. If you have any Physics, mathematics, knowledge,suggestion to this either by text, video, illustration would you be so kind to share? Im looking for anything and everything to do with start to finish with throwing and standing also throwing a Steel Tip Dart (with a flight and its uses along with balance and it's shaft) The functions of each piece of the process compared to it's closest similarities. Thank You So Much.
  3. Name: AP Physics C: Rotational vs. Linear Review (Mechanics) Category: Rotational Motion Date Added: 2017-04-28 Submitter: Flipping Physics Calculus based review and comparison of the linear and rotational equations which are in the AP Physics C mechanics curriculum. Topics include: displacement, velocity, acceleration, uniformly accelerated motion, uniformly angularly accelerated motion, mass, momentum of inertia, kinetic energy, Newton’s second law, force, torque, power, and momentum. Want Lecture Notes? Content Times: 0:12 Displacement 038 Velocity 1:08 Acceleration 1:33 Uniformly Accelerated Motion 2:15 Uniformly Angularly Accelerated Motion 2:34 Mass 3:19 Kinetic Energy 3:44 Newton’s Second Law 4:18 Force and Torque 5:12 Power 5:45 Momentum Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Universal Gravitation Review (Mechanics) Previous Video: AP Physics C: Rotational Dynamics Review - 2 of 2 (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video. AP Physics C: Rotational vs. Linear Review (Mechanics)
  4. Name: AP Physics C: Dynamics Review (Mechanics) Category: Dynamics Date Added: 2017-03-23 Submitter: Flipping Physics Calculus based review of Newton’s three laws, basic forces in dynamics such as the force of gravity, force normal, force of tension, force applied, force of friction, free body diagrams, translational equilibrium, the drag or resistive force and terminal velocity. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:18 Newton’s First Law 1:30 Newton’s Second Law 1:55 Newton’s Third Law 2:29 Force of Gravity 3:36 Force Normal 3:58 Force of Tension 4:24 Force Applied 4:33 Force of Friction 5:46 Static Friction 6:17 Kinetic Friction 6:33 The Coefficient of Friction 7:26 Free Body Diagrams 10:41 Translational equilibrium 11:41 Drag Force or Resistive Force 13:25 Terminal Velocity Next Video: AP Physics C: Work, Energy, and Power Review (Mechanics) Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan for being my Quality Control help. AP Physics C: Dynamics Review (Mechanics)
  5. Name: Review of Momentum, Impact Force, and Impulse Category: Momentum and Collisions Date Added: 2017-01-26 Submitter: Flipping Physics An important review highlighting differences between the equations for Conservation of Momentum, Impact Force and Impulse. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:17 Conservation of Momentum 1:01 An explosion is a collision in reverse 1:22 Impact Force 1:39 Impulse 2:16 Impulse equals 3 things 2:53 How many objects are in these equations? A big THANK YOU to Elle Konrad who let me borrow several of her old dance costumes! Next Video: Using Impulse to Calculate Initial Height Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating How Helmets Affect Impulse and Impact Force Please support me on Patreon! Thank you to my Quality Control help: Christopher Becke, Scott Carter and Jennifer Larsen Review of Momentum, Impact Force, and Impulse
  6. Name: Demonstrating How Helmets Affect Impulse and Impact Force Category: Momentum and Collisions Date Added: 2016-12-08 Submitter: Flipping Physics Demonstrating and measuring how a helmet changes impulse, impact force and change in time during a collision. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:21 The demonstration without a helmet 1:15 The equation for Impulse 1:55 How a helmet should affect the variables 2:36 The demonstration with a helmet 3:29 Comparing with and without a helmet Next Video: Review of Momentum, Impact Force, and Impulse Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating Impulse is Area Under the Curve Please support me on Patreon! Thank you to my Quality Control help: Christopher Becke, Scott Carter, and Jennifer Larsen Demonstrating How Helmets Affect Impulse and Impact Force
  7. Name: Introductory Conservation of Momentum Explosion Problem Demonstration Category: Momentum and Collisions Date Added: 2016-10-13 Submitter: Flipping Physics Now that we have learned about conservation of momentum, let’s apply what we have learned to an “explosion”. Okay, it’s really just the nerd-a-pult launching a ball while on momentum carts. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:38 The demonstration 1:16 The known values 2:07 Solving the problem using conservation of momentum 4:00 Measuring the final velocity of the nerd-a-pult 4:39 Determining relative error 5:09 What happens with a less massive projectile? Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Conservation of Momentum with Demonstrations Please support me on Patreon! Introductory Conservation of Momentum Explosion Problem Demonstration
  8. Name: Proving and Explaining Impulse Approximation Category: Momentum and Collisions Date Added: 2016-09-22 Submitter: Flipping Physics Know when and how to use the “Impulse Approximation”. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:12 Reviewing the examples 0:43 Defining Impulse Approximation 1:41 Determining the forces during the collision 2:27 Solving for the Force Normal (or Force of Impact) 3:12 Determining our error Next Video: How to Wear A Helmet - A PSA from Flipping Physics Multilingual? Please help translate Flipping Physics videos! Previous Video: Impulse Introduction or If You Don't Bend Your Knees When Stepping off a Wall Please support me on Patreon! Proving and Explaining Impulse Approximation
  9. Name: Impulse Introduction or If You Don't Bend Your Knees When Stepping off a Wall Category: Momentum and Collisions Date Added: 2016-09-22 Submitter: Flipping Physics Now mr.p doesn’t bend his knees when stepping off a wall. What is the new force of impact? Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:18 How much does mr.p bend his knees? 1:00 Reviewing the previous problem 1:57 What changes if I don’t bend my knees? 2:41 Impulse introduction 3:36 The impulse during this collision 4:51 Why is it bad to not bend your knees? 5:22 Estimating time of collision if I don’t bend my knees 6:09 Solving for the force of impact 6:51 Review 7:28 No tomatoes were wasted in the making of this video Next Video: Proving and Explaining Impulse Approximation Multilingual? Please help translate Flipping Physics videos! Previous Video: Calculating the Force of Impact when Stepping off a Wall Please support me on Patreon! Impulse Introduction or If You Don't Bend Your Knees When Stepping off a Wall
  10. Name: Calculating the Force of Impact when Stepping off a Wall Category: Momentum and Collisions Date Added: 2016-09-08 Submitter: Flipping Physics A 73 kg mr.p steps off a 73.2 cm high wall. If mr.p bends his knees such that he stops his downward motion and the time during the collision is 0.28 seconds, what is the force of impact caused by the ground on mr.p? Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:21 Translating the problem 1:32 Splitting the problem into parts 3:07 Substituting in known variables 4:30 Finding the final velocity for part 1 6:21 Substituting back into Force of Impact equation 7:23 Converting to pounds Next Video: Impulse Introduction or If You Don't Bend Your Knees When Stepping off a Wall Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine - Example Problem Please support me on Patreon! A big thank you to Jean Gifford for donating the money for Bo and Billy’s bathrobes! Calculating the Force of Impact when Stepping off a Wall
  11. Name: Force of Impact Equation Derivation Category: Momentum and Collisions Date Added: 2017-01-12 Submitter: Flipping Physics Rearranging Newton’s Second Law to derive the force of impact equation. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:09 Newton’s Second Law 1:57 The Force of Impact equation 2:33 The paradigm shift Next Video: Calculating the Force of Impact when Stepping off a Wall Multilingual? Please help translate Flipping Physics videos! Previous Video: You Can't Run From Momentum! (a momentum introduction) Please support me on Patreon! Force of Impact Equation Derivation
  12. Name: Calculating Average Drag Force on an Accelerating Car using an Integral Category: Dynamics Date Added: 2016-08-11 Submitter: Flipping Physics A vehicle uniformly accelerates from rest to 3.0 x 10^1 km/hr in 9.25 seconds and 42 meters. Determine the average drag force acting on the vehicle. Want lecture notes? This is an AP Physics C Topic. Content Times: 0:14 The Drag Force equation 0:39 The density of air 1:33 The drag coefficient 1:59 The cross sectional area 3:11 Determining instantaneous speed 4:08 Instantaneous Drag Force 4:36 Graphing Drag Force as a function of Time 5:17 The definite integral of drag force with respect to time 5:42 Average Drag Force times Total Change in Time Next Video: Instantaneous Power Delivered by a Car Engine - Example Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Average Power Delivered by a Car Engine - Example Problem Please support me on Patreon! Calculating Average Drag Force on an Accelerating Car using an Integral
  13. Name: Instantaneous Power Delivered by a Car Engine - Example Problem Category: Work, Energy, Power Date Added: 2017-01-12 Submitter: Flipping Physics A Toyota Prius is traveling at a constant velocity of 113 km/hr. If an average force of drag of 3.0 x 10^2 N acts on the car, what is the power developed by the engine in horsepower? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:15 The problem 1:18 Which equation to use and why 2:20 Billy solves the problem 3:59 What if the car is moving at 129 km/hr? Next Video: You Can't Run From Momentum! (a momentum introduction) Multilingual? Please help translate Flipping Physics videos! Previous Video: Average Power Delivered by a Car Engine - Example Problem Please support me on Patreon! Instantaneous Power Delivered by a Car Engine - Example Problem
  14. Name: Average Power Delivered by a Car Engine - Example Problem Category: Work, Energy, Power Date Added: 2016-07-28 Submitter: Flipping Physics A 1400 kg Prius uniformly accelerates from rest to 30 km/hr in 9.25 seconds and 42 meters. If an average force of drag of 8.0 N acts on the car, what is the average power developed by the engine in horsepower? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:15 Translating the example to physics 2:13 The equation for power 3:37 Drawing the Free Body Diagram and summing the forces 4:47 Solving for acceleration and Force Applied 5:43 Determining theta 6:01 Solving for Average Power 6:53 Understanding our answer 7:34 The Horse Pedal 9:13 Comparing to a larger acceleration example Next Video: Instantaneous Power Delivered by a Car Engine - Example Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Graphing Instantaneous Power Please support me on Patreon! Average Power Delivered by a Car Engine - Example Problem
  15. Name: Introductory Kinetic Friction on an Incline Problem Category: Dynamics Date Added: 2016-06-16 Submitter: Flipping Physics You place a book on a 14° incline and then let go of the book. If the book takes 2.05 seconds to travel 0.78 meters, what is the coefficient of kinetic friction between the book and the incline? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:01 The example 0:13 Listing the known values 1:09 Drawing the free body diagram 1:58 Net force in the perpendicular direction 2:34 Net force in the parallel direction 4:03 Solving for acceleration 5:07 Solving for Mu 5:40 We made a mistake Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Static Friction on an Incline Problem Please support me on Patreon! Introductory Kinetic Friction on an Incline Problem
  16. Name: Physics "Magic Trick" on an Incline Category: Dynamics Date Added: 2016-06-06 Submitter: Flipping Physics Understand the forces acting on an object on an incline by analyzing the forces on a “floating block”. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:28 Finding the incline angle 1:17 Drawing the Free Body Diagram 2:26 Summing the forces in the perpendicular direction 3:49 Summing the forces in the parallel direction 5:04 Determining masses for the “Magic Trick” 6:11 Adding pulleys, strings and mass 7:34 Floating the block 8:18 Analyzing the forces on the floating block Next Video: Introductory Static Friction on an Incline Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Breaking the Force of Gravity into its Components on an Incline Thanks to Nic3_one and Cyril Laurier for their Fire Sounds: Fire in a can! » constant spray fire 1 by Nic3_one Earth+Wind+Fire+Water » Fire.wav by Cyril Laurier 1¢/minute Physics "Magic Trick" on an Incline
  17. Name: Breaking the Force of Gravity into its Components on an Incline Category: Dynamics Date Added: 2015-10-16 Submitter: Flipping Physics Resolve the force of gravity into its parallel and perpendicular components so you can sum the forces. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 Drawing the Free Body Diagram 1:04 Introducing the parallel and perpendicular directions 2:19 Drawing the components of the force of gravity 2:49 Finding the angle used to resolve the force of gravity into its components 4:33 Solving for the force of gravity parallel 5:15 Solving for the force of gravity perpendicular 5:53 Redrawing the Free Body Diagram Next Video: Physics "Magic Trick" on an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Determining the Static Coefficient of Friction between Tires and Snow 1¢/minute Breaking the Force of Gravity into its Components on an Incline
  18. Name: Newton's Laws of Motion in Space: Force, Mass, and Acceleration Category: Dynamics Date Added: 2015-10-07 Submitter: FizziksGuy Uploaded on Apr 18, 2010ESA Science - Newton In Space (Part 2): Newton's Second Law of Motion - Force, Mass And Acceleration. Newton's laws of motion are three physical laws that form the basis for classical mechanics. They have been expressed in several different ways over nearly three centuries. --- Please subscribe to Science & Reason: • http://www.youtube.com/Best0fScience • http://www.youtube.com/ScienceMagazine • http://www.youtube.com/FFreeThinker --- The laws describe the relationship between the forces acting on a body and the motion of that body. They were first compiled by Sir Isaac Newton in his work "Philosophiæ Naturalis Principia Mathematica", first published on July 5, 1687. Newton used them to explain and investigate the motion of many physical objects and systems. For example, in the third volume of the text, Newton showed that these laws of motion, combined with his law of universal gravitation, explained Kepler's laws of planetary motion. --- Newton's Second Law of Motion: A body will accelerate with acceleration proportional to the force and inversely proportional to the mass. Observed from an inertial reference frame, the net force on a particle is equal to the time rate of change of its linear momentum: F = d(mv)/dt. Since by definition the mass of a particle is constant, this law is often stated as, "Force equals mass times acceleration (F = ma): the net force on an object is equal to the mass of the object multiplied by its acceleration." History of the second law Newton's Latin wording for the second law is: "Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur." This was translated quite closely in Motte's 1729 translation as: "LAW II: The alteration of motion is ever proportional to the motive force impress'd; and is made in the direction of the right line in which that force is impress'd." According to modern ideas of how Newton was using his terminology, this is understood, in modern terms, as an equivalent of: "The change of momentum of a body is proportional to the impulse impressed on the body, and happens along the straight line on which that impulse is impressed." Motte's 1729 translation of Newton's Latin continued with Newton's commentary on the second law of motion, reading: "If a force generates a motion, a double force will generate double the motion, a triple force triple the motion, whether that force be impressed altogether and at once, or gradually and successively. And this motion (being always directed the same way with the generating force), if the body moved before, is added to or subtracted from the former motion, according as they directly conspire with or are directly contrary to each other; or obliquely joined, when they are oblique, so as to produce a new motion compounded from the determination of both." The sense or senses in which Newton used his terminology, and how he understood the second law and intended it to be understood, have been extensively discussed by historians of science, along with the relations between Newton's formulation and modern formulations. Newton's Laws of Motion in Space: Force, Mass, and Acceleration
  19. Name: Experimentally Graphing the Force of Friction Category: Dynamics Date Added: 2015-08-19 Submitter: Flipping Physics To help understand the force of friction, mr.p pulls on a wooden block using a force sensor. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:17 Drawing the Free Body Diagram 0:43 Summing the forces in the x-direction 1:21 Graph when the block doesn’t move 1:46 Graph with the block moving Next Video: Does the Book Move? An Introductory Friction Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Understanding the Force of Friction Equation 1¢/minute Experimentally Graphing the Force of Friction
  20. Name: Understanding the Force of Friction Equation Category: Dynamics Date Added: 2015-08-18 Submitter: Flipping Physics The Force of Friction Equation is actually three equations is one. Learn why! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The basic Force of Friction Equation 0:20 One Kinetic Friction Equation 0:39 The Two Static Friction Equations 1:40 Example Free Body Diagram 2:16 The direction of the Force of Friction 3:20 Determining the magnitude of the Force of Static Friction 4:09 Understanding the “less than or equal” sign 6:08 If the “less than or equal” sign were not there Next Video: Experimentally Graphing the Force of Friction Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to the Coefficient of Friction 1¢/minute Understanding the Force of Friction Equation
  21. Name: Introduction to the Coefficient of Friction Category: Dynamics Date Added: 2015-08-09 Submitter: Flipping Physics Please do not confuse the Coefficient of Friction with the Force of Friction. This video will help you not fall into that Pit of Despair! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The equation for the Force of Friction 0:17 Mu, the symbol for the Coefficient of Friction 1:21 Tables of Coefficients of Friction 2:49 Comparing the values of static and kinetic coefficients of friction 3:54 A typical range of values Next Video: Understanding the Force of Friction Equation Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Static and Kinetic Friction by Bobby 1¢/minute Introduction to the Coefficient of Friction
  22. Name: An Introductory Tension Force Problem Category: Dynamics Date Added: 2015-07-30 Submitter: Flipping Physics Learn how to solve a basic tension force problem with demonstration! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The Problem Demonstrated 0:29 5 Steps to Solve and Free Body Diagram Problem 0:50 Drawing the Free Body Diagram 2:03 Resolving Tension Force 1 into its components (numbers dependency) 4:00 Introducing the Equation Holster! 5:11 Redraw the Free Body Diagram 5:32 Sum the forces in the y-direction 7:24 Sum the forces in the x-direction 8:29 Demonstrating our solution is correct Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to Static and Kinetic Friction by Bobby Previous Video: 5 Steps to Solve any Free Body Diagram Problem 1¢/minute An Introductory Tension Force Problem
  23. Name: 5 Steps to Solve any Free Body Diagram Problem Category: Dynamics Date Added: 2015-07-30 Submitter: Flipping Physics Learn how to solve problems that have Free Body Diagrams! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:15 Step 1) Draw the Free Body Diagram 0:50 Step 2) Break Forces into Components 1:37 Step 3) Redraw the Free Body Diagram 2:15 Step 4) Sum the Forces 2:45 Step 5) Sum the Forces (again) 3:13 Review the 5 Steps Multilingual? Please help translate Flipping Physics videos! Next Video: An Introductory Tension Force Problem Previous Video: Introduction to Equilibrium 1¢/minute: http://www.flippingphysics.com/give.html 5 Steps to Solve any Free Body Diagram Problem
  24. Name: AP Physics 1: Electrostatics Review Category: Exam Prep Date Added: 13 April 2015 - 02:04 PM Submitter: Flipping Physics Short Description: None Provided Review of the Electrostatics topics covered in the AP Physics 1 curriculum. Want View Video
  25. Name: Dynamics Review for AP Physics 1 Category: Exam Prep Date Added: 09 March 2015 - 09:36 AM Submitter: Flipping Physics Short Description: None Provided Review of all of the Dynamics topics covered in the AP Physics 1 curriculum. Content Times: 0:18 Inertial Mass vs. Gravitational Mass 1:14 Newton’s First Law of Motion 2:20 Newton’s Second Law of Motion 3:17 Free Body Diagrams 4:29 Force of Gravity or Weight 4:41 Force Normal 5:32 Force of Friction 7:32 Newton’s Third Law of Motion 8:20 Inclines 9:41 Translational Equilibrium Multilingual? View Video
×
×
  • Create New...