Search the Community
Showing results for tags 'acceleration'.
-
Name: Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions Category: Oscillations Date Added: 2018-04-15 Submitter: Flipping Physics Identifying the spring force, acceleration, and velocity at the end positions and equilibrium position of simple harmonic motion. Amplitude is also defined and shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 Identifying the 3 positions 0:43 Velocity 1:43 Spring Force 2:14 Amplitude 2:30 Acceleration 3:22 Velocity at position 2 4:12 Is simple harmonic motion also uniformly accelerated motion? Thank you to Anish, Kevin, and Olivia for being my “substitute students” in this video! Next Video: Horizontal vs. Vertical Mass-Spring System Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Please support me on Patreon! Thank you to Jonathan Everett, Sawdog, and Christopher Becke for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Simple Harmonic Motion - Force, Acceleration, and Velocity at 3 Positions
-
- simple harmonic motion
- force
- (and 8 more)
-
Name: Angular Accelerations of a Record Player Category: Rotational Motion Date Added: 2017-07-11 Submitter: Flipping Physics A record player is plugged in, uniformly accelerates to 45 revolutions per minute, and then is unplugged. The record player (a) takes 0.85 seconds to get up to speed, (b) spends 3.37 seconds at 45 rpms, and then (c) takes 2.32 seconds to slow down to a stop. What is the average angular acceleration of the record player during all three parts? Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Translating the problem 2:35 Solving part (a) - angular acceleration while speeding up 3:13 Solving part (b) - angular acceleration at a constant angular velocity 3:57 Solving part (c) - angular acceleration while slowing down 4:36 Reflecting on all 3 parts simultaneously Multilingual? Please help translate Flipping Physics videos! Next Video: Uniformly Angularly Accelerated Motion Introduction Previous Video: Angular Acceleration Introduction Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control team for this video. Angular Accelerations of a Record Player
-
- average
- acceleration
- (and 11 more)
-
Name: Angular Acceleration Introduction Category: Rotational Motion Date Added: 2017-07-11 Submitter: Flipping Physics Angular acceleration is introduced by way of linear acceleration. The units of radians per second squared are discussed. Examples of objects which angular acceleration are shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:23 Average angular acceleration 1:02 Angular acceleration units 1:37 Demonstrating objects which have angular acceleration Multilingual? Please help translate Flipping Physics videos! Next Video: Angular Accelerations of a Record Player Previous Video: Introductory Angular Velocity Problem - A Turning Bike Tire Please support me on Patreon! Thank you to Aarti Sangwan, Scott Carter, and Christopher Becke for being my Quality Control team for this video. Angular Acceleration Introduction
-
- radians per second squared
- revolutions
- (and 8 more)
-
Name: AP Physics C: Simple Harmonic Motion Review (Mechanics) Category: Oscillations & Gravity Date Added: 2017-04-30 Submitter: Flipping Physics Calculus based review of Simple Harmonic Motion (SHM). SHM is defined. A horizontal mass-spring system is analyzed and proven to be in SHM and it’s period is derived. The difference between frequency and angular frequency is shown. The equations and graphs of position, velocity, and acceleration as a function of time are analyzed. the phase constant Phi is explained. And Conservation of Mechanical Energy in SHM is discussed. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:12 Defining simple harmonic motion (SHM) 0:53 Analyzing the horizontal mass-spring system 2:26 Proving a horizontal mass-spring system is in SHM 3:38 Solving for the period of a mass-spring system in SHM 4:39 Are frequency and angular frequency the same thing? 5:16 Position as a function of time in SHM 5:44 Explaining the phase constant Phi 6:19 Deriving velocity as a function of time in SHM 7:33 Deriving acceleration as a function of time in SHM 9:05 Understanding the graphs of position, velocity, and acceleration as a function of time in SHM 12:16 Conservation of Mechanical Energy in SHM Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Equations to Memorize (Mechanics) Previous Video: AP Physics C: Universal Gravitation Review (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video. AP Physics C: Simple Harmonic Motion Review (Mechanics)
-
- phi
- function of time
- (and 19 more)
-
Name: AP Physics C: Rotational vs. Linear Review (Mechanics) Category: Rotational Motion Date Added: 2017-04-28 Submitter: Flipping Physics Calculus based review and comparison of the linear and rotational equations which are in the AP Physics C mechanics curriculum. Topics include: displacement, velocity, acceleration, uniformly accelerated motion, uniformly angularly accelerated motion, mass, momentum of inertia, kinetic energy, Newton’s second law, force, torque, power, and momentum. Want Lecture Notes? Content Times: 0:12 Displacement 038 Velocity 1:08 Acceleration 1:33 Uniformly Accelerated Motion 2:15 Uniformly Angularly Accelerated Motion 2:34 Mass 3:19 Kinetic Energy 3:44 Newton’s Second Law 4:18 Force and Torque 5:12 Power 5:45 Momentum Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Universal Gravitation Review (Mechanics) Previous Video: AP Physics C: Rotational Dynamics Review - 2 of 2 (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video. AP Physics C: Rotational vs. Linear Review (Mechanics)
-
Name: AP Physics C: Kinematics Review (Mechanics) Category: Kinematics Date Added: 2017-03-16 Submitter: Flipping Physics Review of conversions, velocity, acceleration, instantaneous and average velocity and acceleration, uniformly accelerated motion, free fall and free fall graphs, component vectors, vector addition, unit vectors, relative velocity and projectile motion. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:12 Introductory Concepts 2:07 Velocity and Acceleration 3:03 Uniformly Accelerated Motion 6:51 Free Fall 7:45 Free Fall Graphs 9:16 Component Vectors 10:58 Unit Vectors 13:09 Relative Velocity 13:51 Projectile Motion Next Video: AP Physics C: Dynamics Review (Mechanics) Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Websitel Please support me on Patreon! Thank you to my Quality Control help: Jen Larsen, Scott Carter, Natasha Trousdale and Aarti Sangwan AP Physics C: Kinematics Review (Mechanics)
-
- projectile motion
- vectors
- (and 8 more)
-
Name: Free Response Question #1 - AP Physics 1 - 2015 Exam Solutions Category: Exam Prep Date Added: 2016-03-25 Submitter: Flipping Physics Want Lecture Notes? Content Times: 0:11 The initial setup 0:29 Part (a) 1:52 Advice about Free Body Diagrams (or Force Diagrams) 2:47 Part (b) 4:37 Part (c) 6:34 A shorter answer to Part (c) Next Video: Free Response Question #2 - AP Physics 1 - 2015 Exam Solutions AP Physics 1 Review Videos Multilingual? Please help translate Flipping Physics videos! 1¢/minute AP® is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Link to The 2015 AP Physics 1 Free Response Questions Free Response Question #1 - AP Physics 1 - 2015 Exam Solutions
-
- newtons second law
- free response question #1
- (and 5 more)
-
Name: Newton's Laws of Motion in Space: Force, Mass, and Acceleration Category: Dynamics Date Added: 2015-10-07 Submitter: FizziksGuy Uploaded on Apr 18, 2010ESA Science - Newton In Space (Part 2): Newton's Second Law of Motion - Force, Mass And Acceleration. Newton's laws of motion are three physical laws that form the basis for classical mechanics. They have been expressed in several different ways over nearly three centuries. --- Please subscribe to Science & Reason: • http://www.youtube.com/Best0fScience • http://www.youtube.com/ScienceMagazine • http://www.youtube.com/FFreeThinker --- The laws describe the relationship between the forces acting on a body and the motion of that body. They were first compiled by Sir Isaac Newton in his work "Philosophiæ Naturalis Principia Mathematica", first published on July 5, 1687. Newton used them to explain and investigate the motion of many physical objects and systems. For example, in the third volume of the text, Newton showed that these laws of motion, combined with his law of universal gravitation, explained Kepler's laws of planetary motion. --- Newton's Second Law of Motion: A body will accelerate with acceleration proportional to the force and inversely proportional to the mass. Observed from an inertial reference frame, the net force on a particle is equal to the time rate of change of its linear momentum: F = d(mv)/dt. Since by definition the mass of a particle is constant, this law is often stated as, "Force equals mass times acceleration (F = ma): the net force on an object is equal to the mass of the object multiplied by its acceleration." History of the second law Newton's Latin wording for the second law is: "Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur." This was translated quite closely in Motte's 1729 translation as: "LAW II: The alteration of motion is ever proportional to the motive force impress'd; and is made in the direction of the right line in which that force is impress'd." According to modern ideas of how Newton was using his terminology, this is understood, in modern terms, as an equivalent of: "The change of momentum of a body is proportional to the impulse impressed on the body, and happens along the straight line on which that impulse is impressed." Motte's 1729 translation of Newton's Latin continued with Newton's commentary on the second law of motion, reading: "If a force generates a motion, a double force will generate double the motion, a triple force triple the motion, whether that force be impressed altogether and at once, or gradually and successively. And this motion (being always directed the same way with the generating force), if the body moved before, is added to or subtracted from the former motion, according as they directly conspire with or are directly contrary to each other; or obliquely joined, when they are oblique, so as to produce a new motion compounded from the determination of both." The sense or senses in which Newton used his terminology, and how he understood the second law and intended it to be understood, have been extensively discussed by historians of science, along with the relations between Newton's formulation and modern formulations. Newton's Laws of Motion in Space: Force, Mass, and Acceleration
-
Name: AP Physics 1: Rotational Kinematics Review Category: Exam Prep Date Added: 23 March 2015 - 09:19 AM Submitter: Flipping Physics Short Description: None Provided Review of the Rotational Kinematics topics covered in the AP Physics 1 curriculum. Content Times: 0:14 Angular Velocity 0:54 Angular Acceleration 1:40 Uniformly Angularly Accelerated Motion 2:34 Uniform Circular Motion 3:30 Tangential Velocity 5:08 Centripetal Force and Centripetal Acceleration 7:10 Conical Pendulum Example Problem 9:36 Period, Frequency and Angular Velocity Multilingual? View Video
-
- rotation
- conical pendulum
- (and 8 more)
-
62 downloads
This is a basic motion detector lab in which a cart is released from a standing position , allowed to roll down an inclined plane, hit a magnetic bumper, rebound back a bit, and repeat. Graphs of displacement, velocity, and acceleration are analyzed. * I've left all of my labs in word format so that the user can tailor them accordingly to suit their needs. We're in this together, after all.Free-
- Acceleration
- PASCO
-
(and 2 more)
Tagged with:
-
File Name: PASCO: Acceleration on inclined plane File Submitter: davekozski File Submitted: 06 Feb 2015 File Category: Kinematics This is a basic motion detector lab in which a cart is released from a standing position , allowed to roll down an inclined plane, hit a magnetic bumper, rebound back a bit, and repeat. Graphs of displacement, velocity, and acceleration are analyzed. * I've left all of my labs in word format so that the user can tailor them accordingly to suit their needs. We're in this together, after all.
-
- Acceleration
- PASCO
-
(and 2 more)
Tagged with:
-
Name: Experimentally Graphing Uniformly Accelerated Motion Category: Kinematics Date Added: 16 January 2015 - 09:38 AM Submitter: Flipping Physics Short Description: None Provided We experimentally determine the position, velocity and acceleration as a function of time for a street hockey puck that is sliding and slowing down. Is it uniformly accelerated motion? Content Times: 0:16 Experimental graph of position as a function of time 0:43 Deciding what the graph of velocity as a function of time ideally should be 1:35 Experimental graph of velocity as a function of time 2:11 Deciding what the graph of acceleration as a function of time ideally should be 2:57 Experimental graph of acceleration as a function of time Multilingual? View Video
-
Name: Using Newton's Second Law to find the Force of Friction Category: Dynamics Date Added: 12 January 2015 - 11:59 AM Submitter: Flipping Physics Short Description: None Provided In order to use Newton’s Second Law, you need to correctly draw the Free Body Diagram. This problem explains a common mistake students make involving the force applied. We also review how to find acceleration on a velocity as a function of time graph. Content Times: 0:22 The problem 0:54 Listing our known values 1:51 Drawing the Free Body Diagram 2:17 A common mistake in our Free Body Diagram 3:32 Solving the problem 4:14 Another common mistake 5:07 Why is the acceleration positive? Multilingual? View Video
-
Name: Understanding Uniformly Accelerated Motion Category: Kinematics Date Added: 09 December 2014 - 02:05 PM Submitter: Flipping Physics Short Description: None Provided Students sometimes have a difficult time understanding what acceleration in meters per second squared really means. Therefore, I present acceleration as meters per second every second instead. This helps students gain a better conceptual understanding of acceleration. Content Times: 0:12 Acceleration is meters per second every second 1:22 The first demonstration 1:56 Finding the velocity at each second 3:18 Finding the position at each second 4:31 The second demonstration Multilingual? View Video
-
- acceleration
- velcoity
-
(and 6 more)
Tagged with:
-
Name: Introduction to Newton’s Second Law of Motion with Example Problem Category: Dynamics Date Added: 21 November 2014 - 02:38 PM Submitter: Flipping Physics Short Description: None Provided The application of Newton’s Second Law is when you really understand what the net force equals mass times acceleration where both force and acceleration are vectors really means. Therefore, we introduce Newton’s Second Law and then do an example problem. Content Times: 0:11 Defining Newton’s Second Law 1:00 The example problem 1:51 Drawing the Free Body Diagram 2:48 The Force of Gravity 3:42 The net force in the y-direction 5:28 The acceleration of the book in the y-direction 6:38 The net force in the x-direction 7:59 Solving for the dimensions of acceleration 8:54 Constant net force means constant acceleration Multilingual? View Video
-
- acceleration
- mass
-
(and 8 more)
Tagged with:
-
Name: Weight and Mass are Not the Same Category: Dynamics Date Added: 10 November 2014 - 10:20 AM Submitter: Flipping Physics Short Description: None Provided Three major differences between weight and mass are discussed and three media examples of weight in kilograms are presented (and you should know that weight is NOT in kilograms). Content Times: 0:18 Base SI dimensions for weight and mass 1:25 NASA: weight in kilograms 1:38 Michio Kaku: weight in kilograms 1:52 Derek Muller of Veritasium: weight in kilograms 2:30 Weight is a vector and mass is a scalar 2:53 Weight is extrinsic and mass is intrinsic 3:52 Comparing weight and mass on the Earth and the moon 4:45 Space elevators Multilingual? View Video
-
- acceleration
- vector
-
(and 7 more)
Tagged with:
-
Name: Introduction to Force Category: Dynamics Date Added: 2016-10-27 Submitter: Flipping Physics Defining Force. Including its dimensions, demonstrations of force and mass affecting acceleration, showing that a force is an interaction between two objects and contact vs. field forces. Content Times: 0:11 Defining force 0:56 Demonstrating how force and mass affect acceleration 2:15 Demonstrating why a force doesn’t necessarily cause acceleration 4:09 Force is a vector 4:23 A force is an interaction between to objects 4:56 Contact vs field forces 5:38 The force of gravity is a field force 6:19 Face and snow force interaction Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to the Force of Gravity and Gravitational Mass Previous Video: Introduction to Inertia and Inertial Mass 1¢/minute Introduction to Force
-
Name: Demonstrating the Components of Projectile Motion Category: Kinematics Date Added: 12 August 2014 - 10:30 AM Submitter: Flipping Physics Short Description: None Provided Projectile motion is composed of a horizontal and a vertical component. This video shows that via a side-by-side video demonstration and also builds the velocity and acceleration vector diagram. Content Times: 0:14 Reviewing Projectile Motion 1:00 Introducing each of the video components 1:40 Building the x-direction velocity vectors 2:15 Building the y-direction velocity vectors 3:12 Combing velocity vectors to get resultant velocity vectors 3:41 Showing how we created the resultant velocity vectors 4:47 Adding acceleration vectors in the y-direction 5:28 Adding acceleration vectors in the x-direction 5:45 Completing the Velocity and Acceleration diagram 5:58 The diagram floating over clouds, i mean, why not, eh? Want View Video
-
- components
- vector
-
(and 5 more)
Tagged with:
-
Name: Don't Drop Your Camera 5.0 Seconds After Liftoff Category: Kinematics Date Added: 22 May 2014 - 04:31 PM Submitter: Flipping Physics Short Description: None Provided An advanced free-fall acceleration problem involving 2 parts and 2 objects. Problem: You are wearing your rocket pack (total mass = 75 kg) that accelerates you upward at a constant 10.5 m/s^2. While preparing to take pictures of the beautiful view, you drop your camera 5.0 seconds after liftoff. 5.0 seconds after you drop the camera, (a) what is the camera's velocity and ( how far are you from the camera? Content Times: 0:17 Reading the problem 1:26 Understanding the problem using a picture 2:10 Listing every known variable 3:22 Which part do we start solving first? 3:47 What do we solve for in part 1? 4:46 That's a lot of subscripts, why? 5:24 Starting to solve the problem. Finding the final velocity for part 1. 6:32 Solving for the final velocity for part 2 for the camera 7:46 Why is the final velocity for part 2 for the camera positive? 9:10 Finding the displacement for part 2 for the camera 9:55 Finding the displacement for part 2 for you 10:42 Finding the distance between you and the camera at the very end 11:27 The Review Want Lecture Notes? Next Video: Introduction to Tip-to-Tail Vector Addition, Vectors and Scalars Previous Video: Dropping Dictionaries Doesn't Defy Gravity, Duh! View Video
-
Name: Dropping Dictionaries Doesn't Defy Gravity, Duh! Category: Kinematics Date Added: 22 May 2014 - 04:29 PM Submitter: Flipping Physics Short Description: None Provided Video Proof of the Mass Independence of the Acceleration due to Gravity and a little dancing. Content Times: 0:14 Reviewing the mass independence of free-fall acceleration. 0:56 1 book 1:36 What's a boom box? 2:07 All 4 videos together 2:31 We can dance if we want to 3:25 Thank you very much for learning with me today View Video
-
Name: Creating a Position vs. Time Graph using Stop Motion Photography Category: Kinematics Date Added: 22 May 2014 - 04:26 PM Submitter: Flipping Physics Short Description: None Provided We talk about a lot of graphs in the theoretical sense. In this video we are actually going to create a position versus time graph in a real sense. By using stop motion photography and stopping a ball at various intervals while falling, we will create a position as a function of time graph. Content Times: 0:23 Identifying the Position vs. Time graph we are going to create 0:46 A single video slice of free-fall 1:19 Slow the video down to 1/8th speed 1:50 Creating the graph 2:10 Proving that reality matches the graph View Video
-
Name: The Drop and Upward Throw of a Ball are Very Similar Category: Kinematics Date Added: 22 May 2014 - 04:25 PM Submitter: Flipping Physics Short Description: None Provided Previously we determined the motion graphs for dropping a ball from 2.0 meters and throwing a ball up to 2.0 meters and catching it again. In this video I show that the reverse of the drop coupled with the drop itself is the same thing as throwing the ball upward. Make sense? Okay, watch the video. Content Times: 0:13 Reviewing the previous graphs 0:25 The drop is the same as the 2nd half of the drop 0:48 Dropping the medicine ball in reverse 1:16 Bobby reviews 1:35 Links to Previous and Next Videos View Video
-
Name: Throwing a Ball up to 2.0 Meters & Proving the Velocity at the Top is Zero Category: Kinematics Date Added: 22 May 2014 - 04:23 PM Submitter: Flipping Physics Short Description: None Provided In the previous lesson we dropped a ball from 2.0 meters above the ground and now we throw one up to a height of 2.0 meters. We do this in order to understand the similarities between the two events. Oh, and of course we draw some graphs. This is an Introductory Free-Fall Acceleration Problem Content Times: 0:18 Reviewing the previous lesson 0:34 Reading the new problem 1:26 Acceleration vs. time 1:59 Velocity vs. time 2:49 Position vs. time 4:16 The Velocity at the top is ZERO! 5:50 Comparing throwing the ball to dropping the ball 6:56 Finding the total change in time 7:44 Finding the velocity initial 9:47 The Review View Video
-
Name: Graphing the Drop of a Ball from 2.0 Meters - An Introductory Free-Fall Acceleration Problem Category: Kinematics Date Added: 22 May 2014 - 04:22 PM Submitter: Flipping Physics Short Description: None Provided This video continues a problem we already solved involving dropping a ball from 2.0 meters. Now we determine how to draw the position, velocity and acceleration as functions of time graphs. Content Times: 0:17 Reviewing the previous lesson 1:00 Acceleration as a function of time 1:31 Velocity as a function of time 2:39 Position as a function of time 3:56 The Review View Video
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.