Search the Community
Showing results for tags 'how'.
-
We live in an electric world and knowing a thing or two about the contraptions that sustain the way of living in this era may help a few of us reconstruct society after a devastating impact event so let us get to the point. Electric generators simply convert the force of motion into current using magnets. When the link between magnetism and electricity was discovered and became electromagnetism, generators followed soon after using electrostatics (triboelectric effect and electrostatic induction) to create charge. The homopolar generators were the first to become a reality when some guy whose last name was Faraday (we all know who it is, he needs no introduction) found that moving a magnet though of a conductive coil and vice versa generated voltage. Hmm, interesting. So long as there is some relative motion between the two, it can generate energy. Many of our dynamo-type generators operate on this principle, say if a magnet were mounted on an axle near a coil and turned by a force such as radial fins beneath a waterfall or blades of a wind-mill like structure then induction could bring the whole world electricity. I learned all of this today but think with a few years of study one could bring a centuries worth of human knowledge to the world over. Maybe that is our strength and fault as human beings, mimicry.
-
I've been extremely curious on how much Physics Education professional dart players have on shooting? It's quite impressive to throw 3 darts in such a small group repeatedly without any fixed sights. If you have any Physics, mathematics, knowledge,suggestion to this either by text, video, illustration would you be so kind to share? Im looking for anything and everything to do with start to finish with throwing and standing also throwing a Steel Tip Dart (with a flight and its uses along with balance and it's shaft) The functions of each piece of the process compared to it's closest similarities. Thank You So Much.
-
I Googled "how much force is in a single keystroke" and I'm going to trust a source that says 12.9 N. This will help me in my overall (obviously hypothetical) analysis. Since this is my final blog post of the year I wanted to sort of wrap it up as well as possible and somehow tie in all of my other blogs. Using an online "character counter", I found out that there are a combined 50,015 characters across my 29 other blog posts, which have an array of topics ranging from pole vaulting to doomsday to Monte Alban. Not accounting for any backspacing, 50,015 is an accurate count of all of the characters I've put into these blogs. Utilizing the accepted force of a keystroke as being 12.9 N, that means I applied an accumulative 645,193.5 N to my keyboard for the purpose of these blogs. That's over 145,000 lbs of force, which seems like far too high of a number but I'm going to accept it regardless for the purpose of making this more interesting. I now wonder what type of things I could accomplish utilizing this much force that does not involve analyzing the physics behind a bladeless fan or a Mexican resturaunt. I could: Break 230 backboards (see blog no. 29) Throw a football very far Probably jump pretty high Write 28 blog posts and have enough left over force to perfectly emulate the biting force of an adult Great White Shark Push the ground really hard and pretend that the dent was caused by 32 1/4 Ford Explorers being stacked on top of each other. As you can see, if I could somehow have concentrated all of the force that I put into the creation of these blogs into a single motion, then I could have pulled off some of the most incredible feats in the history of mankind. But alas, the people are left with 30 thoughtful, well crafted and occasionally humorous blog posts that will some day be hanging in a digital art gallery. Oh what could have been...
-
Name: Introduction to Vector Components Category: Kinematics Date Added: 22 May 2014 - 04:39 PM Submitter: Flipping Physics Short Description: None Provided Components of Vectors are an important piece to understand how vectors work. In this video we learn how to "break" or "resolve" vectors in to their component pieces. Content Times: 0:14 The example displacement vector d 0:44 Finding the y component of vector d 2:17 Finding the x component of vector d 3:18 What does it mean to be a component of a vector? 4:14 A common question about vector components 4:51 Showing mathematically that the vector components add up to the vector 6:48 Explaining how d in the x direction shows both magnitude and direction 7:57 The Review View Video
-
- Components
- vector
-
(and 5 more)
Tagged with:
-
Name: How to use Cardinal Directions with Vectors Category: Kinematics Date Added: 22 May 2014 - 04:37 PM Submitter: Flipping Physics Short Description: None Provided Many students struggle with understanding Cardinal Directions. So this is a very basic video describing how to use cardinal directions with vectors. Content Times: 0:12 Previous example summary 0:48 Two suggestions for working with Cardinal Directions 1:58 East of North = East "from" North 2:18 The 8 possible direcitons 3:51 Two equivalent ways to describe the same vector 4:51 NE, SE, SW, and NW 5:24 The review View Video
-
- cardinal
- directions
- (and 7 more)
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.