Search the Community
Showing results for tags 'integral'.
-
We use integrals to derive the #rotationalinertia of a uniform, long, thin rod. And we demonstrate our answer is correct using a Rotational Inertia Demonstrator. Want Lecture Notes? This is an AP Physics 😄 Mechanics Topic. Content Times: 0:15 Rotational Inertia 0:42 Linear Mass Density 1:51 About Center of Mass 3:02 About an End 4:27 Rotational Inertia Demonstrator (RID) 6:09 About Center of RID 7:03 Comparing our answers 7:43 Demonstrating our answer Next Video: 2 Masses on a Pulley - Torque Demonstration Multilingual? Please help translate Flipping Physics
-
Calculus based review of definite integrals, indefinite integrals, and derivatives as used in kinematics. Graphs of position, velocity, and acceleration as a function of time are compared using derivatives and integrals. Two of the uniformly accelerated motion (or kinematics) equations are derived using indefinite integrals. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:11 Rearranging the acceleration equation to get change in velocity 1:41 Rearranging the velocity equation to get change in position 2:06 Comparing graphs of position, ve
-
- integral
- derivative
- (and 10 more)
-
Name: AP Physics C: Integrals in Kinematics Review (Mechanics) Category: Kinematics Date Added: 2017-04-02 Submitter: Flipping Physics Calculus based review of definite integrals, indefinite integrals, and derivatives as used in kinematics. Graphs of position, velocity, and acceleration as a function of time are compared using derivatives and integrals. Two of the uniformly accelerated motion (or kinematics) equations are derived using indefinite integrals. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:11 Rearranging the acceleration equ
-
- acceleartion
- position
- (and 10 more)
-
Demonstrating, measuring and showing Impulse is Area Under the Force vs. Time Curve. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:09 Deriving the Impulse Equation using algebra 0:47 Deriving the Impulse Equation using calculus 2:08 The demonstration 2:42 Illustrating “area under the curve” Next Video: Demonstrating How Helmets Affect Impulse and Impact Force Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Elastic Collision Problem Demonstration P
-
- demonstration
- calculus
- (and 5 more)
-
Name: Demonstrating Impulse is Area Under the Curve Category: Momentum and Collisions Date Added: 2016-12-01 Submitter: Flipping Physics Demonstrating, measuring and showing Impulse is Area Under the Force vs. Time Curve. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:09 Deriving the Impulse Equation using algebra 0:47 Deriving the Impulse Equation using calculus 2:08 The demonstration 2:42 Illustrating “area under the curve” Next Video: Demonstrating How Helmets Affect Impulse and Impact Force Multilingual? P
-
Name: Calculating Average Drag Force on an Accelerating Car using an Integral Category: Dynamics Date Added: 2016-08-11 Submitter: Flipping Physics A vehicle uniformly accelerates from rest to 3.0 x 10^1 km/hr in 9.25 seconds and 42 meters. Determine the average drag force acting on the vehicle. Want lecture notes? This is an AP Physics C Topic. Content Times: 0:14 The Drag Force equation 0:39 The density of air 1:33 The drag coefficient 1:59 The cross sectional area 3:11 Determining instantaneous speed 4:08 Instantaneous Drag Force 4:36 Graphing Drag Force as a function
-
A vehicle uniformly accelerates from rest to 3.0 x 10^1 km/hr in 9.25 seconds and 42 meters. Determine the average drag force acting on the vehicle. Want lecture notes? This is an AP Physics C Topic. Content Times: 0:14 The Drag Force equation 0:39 The density of air 1:33 The drag coefficient 1:59 The cross sectional area 3:11 Determining instantaneous speed 4:08 Instantaneous Drag Force 4:36 Graphing Drag Force as a function of Time 5:17 The definite integral of drag force with respect to time 5:42 Average Drag Force times Total Change in Time Next Video: Instantan
-
-
- projectile
- velocity
- (and 5 more)
-
-
- displacement
- velocity
-
(and 5 more)
Tagged with:
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.