Jump to content
  • entries
  • comments
  • views

Physics of Baseball...Continued



Although I described the importance of Newton's laws in retrospect to baseball, I have learned many more connections between physics and the exciting sport. One example would be the momentum of a baseball after being released by a pitcher. If Tanaka of the New York Yankees, with a .145kg baseball, threw a 42 m/s fastball towards home plate. You could find the momentum of the baseball by using the equation, P=mv. When plugging in the numbers P= (.145kg)(42m/s), you get momentum to equal 6.09 N*m/s. Furthermore, you can also see the power and the work of Gardner running down first base after making contact with a baseball. Gardner runs down to first base with a force of 800N, which is 27.432m long, at in 2.2 seconds. You can determine his work produced first by using the equation W=Fd. When plugging in the numbers, W=(800N)(27.432m), you find that Gardner produced 21,945.6J of work. Also you can find his power produced by using the equation, P=W/t. After plugging in the numbers, P=(21,945J)/(2.2s), you find that Gardner produced 9,975.27W of power. Overall, I has seen even more connections between baseball and physics in the last couple months, and I hope to find more.


Recommended Comments

Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Create New...