Jump to content

t_hess10

Members
  • Content Count

    29
  • Joined

  • Last visited

  • Days Won

    1

t_hess10 last won the day on September 4 2014

t_hess10 had the most liked content!

Community Reputation

2 Neutral

About t_hess10

  • Rank
    Senior Member
  • Birthday 05/08/1998

Profile Information

  • Gender
    Male
  • Location
    IHS
  • Interests
    Baseball
  1. There are many examples of waves in our daily lives, such as water waves, earthquakes, and radiation. Although these might be different types of waves, they all have one thing in common- they all have wave speed. You can determine wave speed with the equation, s=f(lambda). S represents the wave speed, f represents the frequency, and lambda represents the wave length. As an example, if you were looking at a side view of water waves on a beach and the distance between to wave crests was 10 meters, and .5 waves pass every second, your able to solve for wave speed. By using the equation given, mul
  2. t_hess10

    Waves

    In the study of waves, there's many different types of waves. First, there are mechanical waves, such as sound, water, and seismic waves, which all require a medium to travel through. In contrast, there are electromagnetic waves, such as visible light and x-rays, which all don't require a medium. Also, when looking at waves, the crest is the top, such as the top of a wave on a beach, and the bottom is called a trough. The length between two crests is known as a wavelength and the amplitude is the distance from a medium to the crest, or to the trough. Also, waves have a frequency, which the num
  3. When knowing the way magnets act with each other when in close proximity, you can determine many ways other objects act around them. First, if a magnet runs north to south with the north side of the magnet on the left side of a picture and a compass above the magnet, your able to determine the direction of the compass. Since compass's point in the direction of the magnet field line and the magnets' magnetic field lines run from north to south, the compass would be pointing to the right, since it was above the magnet. Also, a magnetic field strength is greatest when in the most dense area of ma
  4. t_hess10

    Magnets

    In magnets, there are many rules to need to know. First magnets run from north to south outside the magnet and south to north inside the magnet. Also, magnetic field lines show the flow of these electrons and how they interact with other magnets around. When two magnets are close to each other with both of their closest sides the same, the magnets repel each other and magnet field lines shown in between the magnets are seen repelling away from each other. Also, when two magnets are close to each other with their closest sides being opposite, they attract, which is shown with magnetic field lin
  5. t_hess10

    VIRP Tables

    VIRP tables are the best use to find missing information in either series circuits or parallel circuits. However, there's different rules for each type of circuit. First, in a series circuit, all the currents are the same for the total and each resistor. However, the voltage is the same for all resistors and the total in parallel circuits. Also, in a parallel circuit, to solve for the resistance, the addition of 1/each resistor equals 1/total resistance. Lastly, to find missing information, you can use both R=V/I and P=IV. Overall, when using the VIRP table, you can solve any resistor circuit
  6. Although I described the importance of Newton's laws in retrospect to baseball, I have learned many more connections between physics and the exciting sport. One example would be the momentum of a baseball after being released by a pitcher. If Tanaka of the New York Yankees, with a .145kg baseball, threw a 42 m/s fastball towards home plate. You could find the momentum of the baseball by using the equation, P=mv. When plugging in the numbers P= (.145kg)(42m/s), you get momentum to equal 6.09 N*m/s. Furthermore, you can also see the power and the work of Gardner running down first base after ma
  7. t_hess10

    Physics of Tap

    That's cool, I never knew so much physics applied to dancing. But, you also produce a power and work in dancing too.
  8. I've never thought about it that way. Hopefully you stop meeting rude customers and do more exciting "work" at work.
  9. t_hess10

    Work

    That's cool. I wonder how much work professional weigh lifters produce when they max out, as well as the work produced to pull a truck.
  10. Skydiving pretty interesting, but if my parachute didn't open, I would hope that I would have enough air resistance to slow me down enough to stay alive. I wonder how fast someone is actually falling before they pull the parachute.
  11. I've never thought of how kinetic energy and physics deals with falling. That's a lot of force though hitting that court.
  12. That's cool. I work out, but I don't think of the physics that applies to working out until now. Now I know that not only is there power involved in working out, but work too.
  13. Although you don't see many examples of springs throughout our daily lives, one big example is the springs for our cars. You can determine the potential energy of a spring by using the equation PEs = (1/2)kx^2. For example, if a car has a spring constant of 30,000N/m and the spring compresses .1m after landing on the ground, you can determine it's potential energy by multiplying. So, (1/2)(30,000N/m)(.1m)^2 = 150J.
  14. When watching a 100m dash, I've never thought about the work and power that was used by the runner until now. If the runner exerted 500N of force over the course of the 12 second run, then you can determine the runners work and power. For solving for work, W = Fd. So, (500N)(100m) = 50,000N*m of work done. Then, to solve the power that was used, P = W/t. So, (50,000N*m)/(12s) = about 4,167 Watts of power used.
  15. I've realized that when looking at a collision, the momentum remains the same in it; however, what we see is the change in velocity. An example would be a 2kg Velcro ball traveling 30m/s that made contact with a 10kg Velcro block initially at rest. When the collision occurred, they stuck together and traveled 5m/s. If you were to look at the momentum before and after the collision, the momentum is the same. Therefore, no matter the type of collision, although the velocity in a collision may vary, the momentum remains the same.
×
×
  • Create New...