Jump to content

Search the Community

Showing results for tags 'momentum'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Physics News
    • Announcements
    • News Headlines
    • Physics In Action Podcast
  • General
    • Introductions
    • APlusPhysics Alumni
    • Site Suggestions & Help
    • Homework Help
    • Labs and Projects
    • Break Room
    • TV & Movie Physics
    • Video Discussions
    • STEM Discussion
  • Course Meeting Rooms
    • Honors and Regents Physics
    • AP Physics 1/2
    • AP Physics C

Categories

  • APlusPhysics Guides
  • Books
  • AP Physics 1/2
    • General / Other
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Impulse and Momentum
    • WEP
    • Rotational Motion
    • Oscillations
    • Fluids
    • Thermodynamics
    • Electrostatics
    • Circuits
    • Magnetism
    • Waves
    • Modern Physics
    • AP Exam Prep
  • AP Physics C
    • General / Other
    • Kinematics
    • Dynamics
    • WEP
    • Momentum & Impulse
    • Rotation
    • Gravitation
    • Oscillations
    • Electrostatics
    • Circuits
    • Magnetism
    • Induction
    • Exam Prep
  • Regents / Honors Physics
    • General / Other
    • Math Review
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Momentum & Impulse
    • Work, Energy, Power
    • Electricity
    • Magnetism
    • Waves
    • Modern Physics
    • Exam Prep
  • Simulations / Models

Blogs

  • Physics in Flux
  • Mr. Powlin
  • Blog willorn
  • Blog awalts
  • Santa Claus is REAL!!!
  • Blog coltsfan
  • Blog rWing77IHS
  • Blog soccergirl
  • Blog hoopsgirl
  • Blog caffeinateddd
  • Blog Sbutler93
  • Blog PhysicsInAction
  • Blog bazinga
  • Blog WoWAngela
  • Blog probablykevin
  • Blog NewFoundGlory
  • Blog DANtheMAN
  • Blog Soccerboy2003D
  • Blog moe.ron
  • Blog challengerguy
  • Blog bxh8620
  • Blog darkassassin
  • Blog ohyeahphysics
  • Radio
  • Blog jade
  • North Salem High School AP-B Physics Blog
  • Blog landshark69
  • Blog Tiravin
  • Blog flipgirl
  • questioning everything
  • emma123321's Blog
  • Blog goNavy51
  • Blog MrPhysics
  • Sara T's Blog
  • hollyferg's Blog
  • Blog lemonlime799
  • Stardust's Blog
  • Blog lacrosse12
  • Blog xcrunner92
  • Blog Bob Enright
  • Blog Swagmeister11
  • Blog ThatGuy
  • Blog Kapow
  • Blog Doctor Why
  • Blog [not]TheBrightestBulb
  • Blog Wunderkind5000
  • Blog daboss9
  • Blog OffInMyOwnWorld
  • Fg = (Fizzix)(Girl)
  • Blog 136861
  • Blog Albert Hawking
  • Blog gburkhart
  • Blog AldTay
  • Kat's corner
  • Danielle17's Blog
  • Mermaids Lagoon
  • RaRaRand
  • rtsully829's Blog
  • Patchy's Blog
  • skyblue22's Blog
  • HaleighT's Blog
  • dwarner's Blog
  • JBrown3's Blog
  • Christina H.'s Blog
  • Do cats always land on their feet?
  • LilBretz's Physics Blog
  • jay day
  • Blog smithr7
  • Blog keeth
  • PepperJack's Blog
  • jbilodeau's Blog
  • Physics Blog
  • Bugs Blog
  • blog 1
  • Blog jmcpherson82
  • Blog HannahG
  • Blog AlphaGeek
  • Blog sarabuckbee
  • Blog mathgeek15
  • Yay physics!
  • Blog goalkeeper0
  • Blog lshads
  • Dodgeball
  • Blog caffeinefueledphysics
  • Blog midnightpanther
  • CMaggio's Blog
  • Blog bdavis
  • Blog MrMuffinMan
  • Blog denverbroncos
  • Blog DavidStack
  • Blog CharlieEckert
  • Blog SwagDragon15
  • Blog jfrachioni
  • Blog PostMeister
  • NevinO's Blog
  • José P's Blog
  • JDiddyInDaHouse's Blog
  • npignato's Blog
  • Above & Beyond
  • AndrewB's Blog
  • The Awesome Blog
  • Pineapple Grotto
  • physics blog
  • JamesWil's Blog
  • How does Iron Man fly?
  • KC12
  • Physics of Cheerleading
  • Elijah35's Blog
  • Physics?
  • Blog HannahG
  • mgiamartino's Blog
  • ericaplukas' Blog
  • as151701's Blog
  • Physics yeah!
  • TayCro
  • ACorb16's Blog
  • Patricks Blog with friends
  • Patricks Blog with friends
  • CM YAAAAAHHHHH
  • Ben's Post
  • Wise words from Leon Sandcastle
  • What Is A CT Scan
  • Physics Blog
  • Physics Of Videogames
  • ClarkK's Blog
  • Darts
  • Euclidean Blog
  • jfrachioni's Blog
  • Momentumous' Blog
  • goalkeeper0's Blog
  • The Blog of SCIENCE
  • physics on roller coasters
  • physics on swimming
  • physics on softball
  • physics on bike riding
  • The Real Blog, the Best Blog
  • RTB24's Blog
  • Physics!
  • PHYSICS courtesy of Shabba Ranks.
  • physicsguy#1
  • Walsherific Blogging!
  • Give me you're best shot fysics
  • Tired and a little dehydrated
  • bazinga818's Blog
  • TerminalVelociraptor
  • ThatBlogOverThere
  • Blog Having Nothing to do with Physics
  • Sarcasm And Some Physics Too
  • MarcelaDeVivo's Blog
  • martella6's Blog
  • Physics in the real world
  • abbyeschmitz's Blog
  • michaelford3's Blog
  • imani2014's Blog
  • kpluk3's Blog
  • hannahz's Blog
  • Celisse_R's Blog
  • Stephanie528's Blog
  • reedelena's Blog
  • Brittany16's Blog
  • OksanaZ's Blog
  • ihsseniorhill
  • Lynn152461's Blog
  • bailliexx13's Blog
  • hann129's Blog
  • Celeena's Blog
  • necharles17's Blog
  • Ben Shelton's Blog
  • cierraw's reflection on physics class
  • Amanda's Blog
  • Abbeys Blog
  • dspaker's Blog
  • Chanae's Blog
  • Halo Physics
  • Sandra's Blog
  • anna's Blog
  • SabrinaJV's Blog
  • kenzie10's Blog
  • hecht0520's Blog
  • DianeTorres' Blog
  • sputnam14
  • mitchell44's Blog
  • physics
  • happytoast's Blog
  • Basketball44
  • physics around us
  • Theo Cup
  • Merkel's Blog
  • claremannion's Blog
  • maddiejeanne15's Blog
  • Basketball Physics
  • PfFlyer17
  • jackbowes10's Blog
  • mt8397's Blog
  • zach_memmott11's Blog
  • emvan2's Blog
  • michaela1707's Blog
  • Faith DeMonte
  • Physics with Marisa
  • kenzie10's Blog
  • Kirch's Blog
  • theantonioj's Blog
  • Joe13's Blog
  • Zachary Denysenko's Blog
  • Ficher Chem Co. Ltd: Crystal meth, Buy Research Chemicals Online
  • Celisse_R's Blog
  • Regents Physics
  • cyan1's Blog
  • Reflection on Physics Class (3rd quarter)
  • physicsgal1's Blog
  • cgl15's Blog
  • Beginner Blogger
  • Reflections on blogs
  • Fezziksphysics' Blog
  • Physics824
  • PhunPhysics's Blog
  • pinkblue2's Blog
  • aphysics15's Blog
  • kphysics15
  • GoArrows15's Blog
  • mphysics' Blog
  • physicsislife's Blog
  • A High Schooler's HP Blog
  • kphysics' Blog
  • dls715's Blog
  • Muchfungophysics!'s Blog
  • apfphysics15's Blog
  • Hot Dog! Is that science?!
  • purple15's Blog
  • sciencegirl123's Blog
  • atrestan15's Blog
  • Seriously, was there homework?
  • #Physicsislife
  • billnyethescienceguy's Blog
  • Novice Blogger
  • Science4Life's Blog
  • adeck15's Blog
  • physicsisawesome's Blog
  • Rules on How to Rule the Kingdom of Physics
  • Rules on How to Rule the Kingdom of Physics
  • Sam's Blogging Blog of Blogginess
  • ck's Blog
  • jgalla's Blog
  • thisregistrationsucks' Blog
  • AP Physics C - The Final Frontier
  • Playground of the Mind with Dan
  • Mike V.'s Physics Blog
  • ariannatorpey's Blog
  • Michael783's Blog
  • Michael783's Blog
  • JessByrnes717's Blog
  • JessByrnes717's Blog
  • kmiller0212's Blog
  • The Kowalski Dimension
  • joshdeutsch's Blog
  • tuttutgoose's Blog
  • tuttutgoose's Blog
  • Kylee's Physics Blog
  • ItownEagl3's Blog
  • Elenarohr's Blog
  • james000345's Blog
  • Blogging Assignment
  • Lia's blog
  • KalB's Blog
  • NatalieB's Blog
  • kyraminchak12's Blog
  • t_hess10's Blog
  • Bootsy:)'s Blog
  • Ameliaâ„¢'s Blog
  • moritz.zoechling's Blog
  • Wibbly Wobbly Timey Wimey Physics
  • Hannah K's Blog:-)
  • That AP Physics C blog doe
  • Mandy's Blog
  • Quinn's Blog
  • jacmags' Blog
  • kelsey's Blog
  • Haley Fisher Blog
  • Jman612's Blog
  • A-Wil's Physics C Blog
  • morganism2.0's Blog
  • mdeng351's Blog
  • heather_heupel's Blog
  • CoreyK's Blog
  • isaacgagarinas' Blog
  • Mary_E27's Blog
  • zach_m's Blog
  • D Best Blog posts
  • Grace21's Blog
  • Grace21's Blog
  • ally_vanacker's Blog
  • natemoore10's Blog
  • The Physics (or lackthereof) of The Hobbit
  • Fee-oh-nuh's Blog
  • Physcics in eating food
  • ErikaRussell's Blog
  • Djwalker06's Blog
  • aschu103's Blog
  • Evan Plattens blog
  • danvan13's Blog
  • AnnieB's Blog
  • Jwt's Blog
  • aj31597's Blog
  • miranda15's Blog
  • miranda15's Blog
  • Monigle123's Blog
  • The Physics of a Slapshot
  • devon000885's Blog
  • devon000885's Blog
  • jakeb168 blog
  • physics of my life
  • Danny's Blog
  • Matts blog
  • Ryanz18's Blog
  • Ryanz18's Blog
  • Alyssa's Blog
  • Tuskee's Blog
  • Physics in Running!
  • konneroakes' Blog
  • B-Reezy64's Blog
  • WanidaK's Blog
  • Physics in falling
  • Physics in falling
  • Physics everywhere
  • The Race
  • NYC physics
  • JamesG's Blog
  • Megan's Blog
  • mikedangelo13's Blog
  • Z824's Blog
  • How Gwen Stacy Died (Physics Version)
  • Harrison's Blog
  • Kgraham30's Blog
  • Physics in the Modern World
  • jazmine2497's Blog
  • Colby's Blog
  • Colby's Blog
  • All da Physics
  • Zmillz15's Blog
  • Walter Lewin
  • fminton20's Blog
  • Ryanz18's Blog
  • Ryanz18's Blog
  • Antonio Morales
  • PaperLand
  • stargazer14
  • Hannah's Blog
  • Just Some Thoughts on Physics
  • Nate's Blog
  • Anna's APC Blog
  • JesseLefler
  • A Diver's look at physics
  • Physic
  • IVIR GREAT's Physics
  • Physics Blog
  • Z's Blog
  • ZZ's Blog
  • Alpha Baker Gamma
  • Phyzx
  • a blog about physics
  • Ashley's Blog
  • Life
  • State of the Art Novel InFlowTech 1Gearturbine RotaryTurbo 2Imploturbocompressor One Compression Step
  • Nicole's Blog
  • Phys-X
  • Fun With Physics
  • Physics in the Real World
  • Physics and Video Games
  • Physics C and How it Relates to Me
  • My Life, Baseball and Physics
  • My Journey in Physics
  • CVs Blog
  • Blogs
  • Kerbal Space Program: Nicholas Enterprises
  • Actual Physics from an Actual Physics Student
  • A Blog
  • World of Physics
  • Kayla's Blog
  • So, I guess I signed up for another year of ap physics...
  • Physics take two
  • Dissertation writing service
  • eclark
  • Escort Directory
  • Physics of Video Games
  • An Physic
  • Paramount California University
  • Jeremy Walther
  • The Physics of Swimming
  • Physics Blog
  • RK's Physics Blog
  • AP Physics C Student Blog
  • jrv12's physics blog
  • Captain's Log
  • Physics blogs
  • Important Tips You Should Consider When Searching For A Dissertation Topic
  • About me
  • The Physics Behind Life
  • Aaron's Coverage
  • Home is Where Your Displacement is Zero
  • Dog with a Blog
  • Don't Stop Me Now
  • CLICKBAIT TITLE
  • Soccer News
  • A Queue of Posts
  • Dat Music Kid's Blog
  • Getting the most out of studying
  • Bogart's Blogging Bonanza
  • Foul ball physics
  • GoDissertationHelp
  • Affordable Assignment Help Services for Students
  • super hair pieces
  • Ficher Chem Co. Ltd: Buy crystal meth online
  • Difference between townhomes and townhouses?
  • John Quinn
  • Inter Mock Test Series
  • kalyan matka
  • Forex dedicated server
  • Satta matka result
  • kalyan matka
  • matka result
  • HIPAA Training
  • How to report an accident in 6 simple steps
  • DPboss
  • Naruto Party Supplies | Naruto Party Decorations
  • Definition of Speech Synthesis and Its Applications
  • Matka India
  • Matka Play
  • spouse visa australia
  • Legal translation Dubai
  • Satta Matka
  • You need to lay of and relax to get better mental health.
  • Matka Result
  • Matka Result
  • Kolkata Fatafat Tips
  • Improving your mental health
  • Matka
  • Satta Matta Matka
  • What is Offshore? Is it Legal?
  • A Shining Blog in Darkness
  • WHY DPBOSS IS MOST SEARCHED KEYWORDS INTO SATTA MATKA INDUSTRY?
  • Buy Travel Gear UK
  • Satta Matka Result
  • Delhi Satta King
  • Amar Satta Matka
  • Matka
  • Sex Is an Emotional Bonding Mechanism for Men
  • Are Coworking spaces worth the expenditure?
  • Trusted Online Matka app

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Biography


Location


Interests


Occupation

  1. Name: Impulse for Two Objects being Attracted to One Another Category: Circular Motion & Gravity Date Added: 2018-03-11 Submitter: Flipping Physics In a universe devoid of anything else, two identical spheres of mass, m, and radius, R, are released from rest when they have a distance between their centers of mass of X. Find the magnitude of the impulse delivered to each sphere until just before they make contact. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:07 Translating the problem 1:26 Applicable impulse equations 2:13 Conservation of mechanical energy 3:28 Showing a common mistake 4:00 Solving the problem Next Video: Force of Gravity and Gravitational Potential Energy Functions from Zero to Infinity (but not beyond) Multilingual? Please help translate Flipping Physics videos! Previous Video: Mechanical Energy of a Satellite in Circular Orbit Please support me on Patreon! Thank you to Aarti Sangwan, Sawdog, Jonathan Everett, Christopher Becke, and Scott Carter for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video. Impulse for Two Objects being Attracted to One Another
  2. I am confused about problem number seven part b in this pdf. http://aplusphysics.com/ap1/Problems/AP1 Momentum.pdf I read the given answer, and I am still confused. I don't know how you are supposed to get 0 m/s for the velocity of the block. Why do you use negative impulse for the block when you use positive impulse for the sphere? When do you use negative impulse? Why don't you use the mass of the entire system, which would be the block and the ball? This has to do with it being elastic/inelastic, but I don't know how you can tell from an impulse graph. Help??
  3. I've been extremely curious on how much Physics Education professional dart players have on shooting? It's quite impressive to throw 3 darts in such a small group repeatedly without any fixed sights. If you have any Physics, mathematics, knowledge,suggestion to this either by text, video, illustration would you be so kind to share? Im looking for anything and everything to do with start to finish with throwing and standing also throwing a Steel Tip Dart (with a flight and its uses along with balance and it's shaft) The functions of each piece of the process compared to it's closest similarities. Thank You So Much.
  4. Name: Demonstrating Why Water Stays in a Bucket Revolving in a Vertical Circle Category: Rotational Motion Date Added: 2017-10-15 Submitter: Flipping Physics Yes, water stays in the bucket. Would you like to know why? Watch the video and learn! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 The demonstration 0:52 Why does water flow out of a bucket? 1:40 Inertia! 2:38 Visualizing why Next Video: Analyzing Water in a Bucket Revolving in a Vertical Circle Multilingual? Please help translate Flipping Physics videos! Previous Video: Determining the Force Normal on a Toy Car moving up a Curved Hill Please support me on Patreon! Thank you to Aarti Sangwan and Christopher Becke for being my Quality Control Team for this video. Demonstrating Why Water Stays in a Bucket Revolving in a Vertical Circle
  5. Name: AP Physics C: Rotational vs. Linear Review (Mechanics) Category: Rotational Motion Date Added: 2017-04-28 Submitter: Flipping Physics Calculus based review and comparison of the linear and rotational equations which are in the AP Physics C mechanics curriculum. Topics include: displacement, velocity, acceleration, uniformly accelerated motion, uniformly angularly accelerated motion, mass, momentum of inertia, kinetic energy, Newton’s second law, force, torque, power, and momentum. Want Lecture Notes? Content Times: 0:12 Displacement 038 Velocity 1:08 Acceleration 1:33 Uniformly Accelerated Motion 2:15 Uniformly Angularly Accelerated Motion 2:34 Mass 3:19 Kinetic Energy 3:44 Newton’s Second Law 4:18 Force and Torque 5:12 Power 5:45 Momentum Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Universal Gravitation Review (Mechanics) Previous Video: AP Physics C: Rotational Dynamics Review - 2 of 2 (Mechanics) Please support me on Patreon! Thank you to Sawdog for being my Quality Control individual for this video. AP Physics C: Rotational vs. Linear Review (Mechanics)
  6. Name: AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics) Category: Momentum and Collisions Date Added: 2017-04-28 Submitter: Flipping Physics Calculus based review of conservation of momentum, the momentum version of Newton’s second law, the Impulse-Momentum Theorem, impulse approximation, impact force, elastic, inelastic and perfectly inelastic collisions, position, velocity and acceleration of the center of mass of a system of particles, center of mass of a rigid object with shape, and volumetric, surface and linear mass densities. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:11 Momentum 0:38 Momentum and Newton’s Second Law 1:44 Conservation of Momentum 2:35 Impulse-Momentum Theorem 4:23 Impulse Approximation and Force of Impact 5:32 Elastic, Inelastic, and Perfectly Inelastic Collisions 6:39 Position of the Center of Mass of a System of Particles 7:19 Velocity of the Center of Mass of a System of Particles 7:54 Acceleration of the Center of Mass of a System of Particles 8:31 Center of Mass of a Rigid Object with Shape 10:09 Volumetric, Surface, and Linear Mass Density Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Next Video: AP Physics C: Rotational Kinematics Review (Mechanics) Previous Video: AP Physics C: Integrals in Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan, Jordan Bueno, and Michael Nelson for being my Quality Control team for this video. AP Physics C: Momentum, Impulse, Collisions and Center of Mass Review (Mechanics)
  7. Name: 2D Conservation of Momentum Example using Air Hockey Discs Category: Momentum and Collisions Date Added: 2017-05-21 Submitter: Flipping Physics A 28.8 g yellow air hockey disc elastically strikes a 26.9 g stationary red air hockey disc. If the velocity of the yellow disc before the collision is 33.6 cm/s in the x direction and after the collision it is 10.7 cm/s at an angle 63.4° S of E, what is the velocity of the red disc after the collision? This is an AP Physics 1 topic. Want Lecture Notes? Content Times: 0:12 The problem 1:49 Breaking the initial velocity of disc 1 into its components 3:06 Conservation of momentum in the x-direction 5:24 Conservation of momentum in the y-direction 6:26 Solving for the final velocity of disc 2 using its components 8:40 Was this an elastic collision? 12:39 Movie Character Day! Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to Circular Motion and Arc Length Previous Video: Review of Mechanical Energy and Momentum Equations and When To Use Them! Please support me on Patreon! Thank you to my Quality Control help: Christopher Becke, Scott Carter and Jennifer Larsen "Nombre de los vientos". Licensed under Public domain via Wikimedia Commons - 2D Conservation of Momentum Example using Air Hockey Discs
  8. File Name: WS: Momentum and Motion File Submitter: FizziksGuy File Submitted: 19 Apr 2013 File Category: Momentum & Impulse Problem set combining conservation of momentum, projectile motion, and friction.
  9. Name: You Can't Run From Momentum! (a momentum introduction) Category: Momentum and Collisions Date Added: 2017-01-12 Submitter: Flipping Physics Two kids walk through the woods discussing momentum. I mean, who wouldn’t? Okay, fine. It’s a basic introduction to the concept of momentum. Want Lecture Notes? This is an AP Physics 1 Topic. Next Video: Force of Impact Equation Derivation http://www.flippingphysics.com/impact-force.html Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine - Example Problem Please support me on Patreon! Please consider becoming a Flipping Physics Quality Control helper. You Can't Run From Momentum! (a momentum introduction)
  10. Name: Review of Momentum, Impact Force, and Impulse Category: Momentum and Collisions Date Added: 2017-01-26 Submitter: Flipping Physics An important review highlighting differences between the equations for Conservation of Momentum, Impact Force and Impulse. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:17 Conservation of Momentum 1:01 An explosion is a collision in reverse 1:22 Impact Force 1:39 Impulse 2:16 Impulse equals 3 things 2:53 How many objects are in these equations? A big THANK YOU to Elle Konrad who let me borrow several of her old dance costumes! Next Video: Using Impulse to Calculate Initial Height Multilingual? Please help translate Flipping Physics videos! Previous Video: Demonstrating How Helmets Affect Impulse and Impact Force Please support me on Patreon! Thank you to my Quality Control help: Christopher Becke, Scott Carter and Jennifer Larsen Review of Momentum, Impact Force, and Impulse
  11. Name: Introductory Elastic Collision Problem Demonstration Category: Momentum and Collisions Date Added: 2016-11-24 Submitter: Flipping Physics An elastic collision is demonstrated and analyzed. Want lecture notes? This is an AP Physics 1 Topic. A big thank you to Mr. Becke for being a guest in today’s video! Content Times: 0:25 Reading and translating the problem 1:17 The demonstration 1:52 Solving for velocity final of cart 2 3:46 Measuring the velocity final of cart 2 4:25 Checking if kinetic energy is conserved 6:22 We should have converted to meters per second Next Video: Demonstrating Impulse is Area Under the Curve Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Perfectly Inelastic Collision Problem Demonstration Please support me on Patreon! Thank you to my Quality Control help: Christopher Becke and Jennifer Larsen Introductory Elastic Collision Problem Demonstration
  12. Name: Introductory Perfectly Inelastic Collision Problem Demonstration Category: Momentum and Collisions Date Added: 2016-11-17 Submitter: Flipping Physics A perfectly inelastic collision is demonstrated and analyzed. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:08 Demonstrating the Perfectly Inelastic Collision 0:41 Known values 1:34 Using Conservation of Momentum 2:22 Both objects have the same final velocity 3:37 Measuring the final velocity 4:05 Determining the relative error 4:45 Fruit Day! Next Video: Introductory Elastic Collision Problem Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Elastic and Inelastic Collisions Please support me on Patreon! Thank you to my Quality Controllers: Christopher Becke Scott Carter Introductory Perfectly Inelastic Collision Problem Demonstration
  13. Name: Introduction to Elastic and Inelastic Collisions Category: Momentum and Collisions Date Added: 2016-11-10 Submitter: Flipping Physics Learn about Elastic, Inelastic and Perfectly Inelastic collisions via a demonstration Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:15 The charities 1:05 Elastic collisions 2:09 Inelastic collisions 3:29 Perfectly Inelastic collisions 4:13 Demonstration #1 5:28 Demonstration #2 Next Video: Introductory Perfectly Inelastic Collision Problem Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Conservation of Momentum Explosion Problem Demonstration The Charities: Children With Hair Loss Alpha House Home Of New Vision American Foundation for Suicide Prevention Please support me on Patreon! Introduction to Elastic and Inelastic Collisions
  14. Name: Introductory Conservation of Momentum Explosion Problem Demonstration Category: Momentum and Collisions Date Added: 2016-10-13 Submitter: Flipping Physics Now that we have learned about conservation of momentum, let’s apply what we have learned to an “explosion”. Okay, it’s really just the nerd-a-pult launching a ball while on momentum carts. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:38 The demonstration 1:16 The known values 2:07 Solving the problem using conservation of momentum 4:00 Measuring the final velocity of the nerd-a-pult 4:39 Determining relative error 5:09 What happens with a less massive projectile? Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Conservation of Momentum with Demonstrations Please support me on Patreon! Introductory Conservation of Momentum Explosion Problem Demonstration
  15. Name: Introduction to Conservation of Momentum with Demonstrations Category: Momentum and Collisions Date Added: 2016-10-13 Submitter: Flipping Physics Demonstrations of and Introduction to Conservation of Momentum Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:10 Deriving Conservation of Momentum 1:33 Demonstrating Conservation of Momentum 1:53 Analyzing the demonstration 3:29 How a rocket works Next Video: Introductory Conservation of Momentum Explosion Problem Demonstration Multilingual? Please help translate Flipping Physics videos! Previous Video: How to Wear A Helmet - A PSA from Flipping Physics Please support me on Patreon! Introduction to Conservation of Momentum with Demonstrations
  16. Name: Proving and Explaining Impulse Approximation Category: Momentum and Collisions Date Added: 2016-09-22 Submitter: Flipping Physics Know when and how to use the “Impulse Approximation”. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:12 Reviewing the examples 0:43 Defining Impulse Approximation 1:41 Determining the forces during the collision 2:27 Solving for the Force Normal (or Force of Impact) 3:12 Determining our error Next Video: How to Wear A Helmet - A PSA from Flipping Physics Multilingual? Please help translate Flipping Physics videos! Previous Video: Impulse Introduction or If You Don't Bend Your Knees When Stepping off a Wall Please support me on Patreon! Proving and Explaining Impulse Approximation
  17. Name: Impulse Introduction or If You Don't Bend Your Knees When Stepping off a Wall Category: Momentum and Collisions Date Added: 2016-09-22 Submitter: Flipping Physics Now mr.p doesn’t bend his knees when stepping off a wall. What is the new force of impact? Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:18 How much does mr.p bend his knees? 1:00 Reviewing the previous problem 1:57 What changes if I don’t bend my knees? 2:41 Impulse introduction 3:36 The impulse during this collision 4:51 Why is it bad to not bend your knees? 5:22 Estimating time of collision if I don’t bend my knees 6:09 Solving for the force of impact 6:51 Review 7:28 No tomatoes were wasted in the making of this video Next Video: Proving and Explaining Impulse Approximation Multilingual? Please help translate Flipping Physics videos! Previous Video: Calculating the Force of Impact when Stepping off a Wall Please support me on Patreon! Impulse Introduction or If You Don't Bend Your Knees When Stepping off a Wall
  18. Name: Calculating the Force of Impact when Stepping off a Wall Category: Momentum and Collisions Date Added: 2016-09-08 Submitter: Flipping Physics A 73 kg mr.p steps off a 73.2 cm high wall. If mr.p bends his knees such that he stops his downward motion and the time during the collision is 0.28 seconds, what is the force of impact caused by the ground on mr.p? Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:21 Translating the problem 1:32 Splitting the problem into parts 3:07 Substituting in known variables 4:30 Finding the final velocity for part 1 6:21 Substituting back into Force of Impact equation 7:23 Converting to pounds Next Video: Impulse Introduction or If You Don't Bend Your Knees When Stepping off a Wall Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine - Example Problem Please support me on Patreon! A big thank you to Jean Gifford for donating the money for Bo and Billy’s bathrobes! Calculating the Force of Impact when Stepping off a Wall
  19. Name: Force of Impact Equation Derivation Category: Momentum and Collisions Date Added: 2017-01-12 Submitter: Flipping Physics Rearranging Newton’s Second Law to derive the force of impact equation. Want lecture notes? This is an AP Physics 1 Topic. Content Times: 0:09 Newton’s Second Law 1:57 The Force of Impact equation 2:33 The paradigm shift Next Video: Calculating the Force of Impact when Stepping off a Wall Multilingual? Please help translate Flipping Physics videos! Previous Video: You Can't Run From Momentum! (a momentum introduction) Please support me on Patreon! Force of Impact Equation Derivation
  20. I'm sure everyone reading this knows what a sniper rifle is. You know: long barrel, cylindrical scope, big long bullets, used for long range and heavily armored targets. But, what you might not know is how powerful one is. The standard NATO sniper rifle bullet is the .5 BMG. Made in 1921, the most powerful version of that cartridge is about .052 kg, and leaves the rifle at 882 m/s. p = mv, so p = (.052)(882) = 45.86 Ns. That big fat hunk of copper has about 50 Ns of life in it. Now, the average adult human head weighs about 4.5 - 5 kg. Seen as how I'm writing this I'll use myself as the test subject. I'm not quite an adult yet, so let's say 4.5 kg. One day, a friendly physics teacher near you sees just way too many tests in one day, pulls a standard issue sniper rifle out of his attack and takes a pot shot at some weird kid. Naturally my head pops of like a tootsie pop in that owl cartoon. Assuming the bullet finds a warm new home in my cranium, that's 10.08 m/s it pulls my dome along with. The average height of a 17 year old male teenager is about 1.75 m. Assuming that the bullet is fired horizontally, we can use kinematics magic to find that my head hits the ground 6.02 m away from my toothpick body, and rolls whocares m afterwards. Doesn't sound fun does it? That's why I'm proud to present to you our newest innovation in protective headgear: the tank hat. This simple helmet is made of solid 6" steel and can protect you from bullets, mortar, bullies, and apples. Teach Newton a thing or two today! --Warning, tank hat does not protect against .5 BMG Armor Piercing rounds. Don't be rude to IHS Physics teachers for your own good--
  21. Name: AP Physics 1: Rotational Dynamics Review Category: Exam Prep Date Added: 28 March 2015 - 07:46 PM Submitter: Flipping Physics Short Description: None Provided Review of the Rotational Dynamics topics covered in the AP Physics 1 curriculum. Want View Video
  22. Name: Linear Momentum and Impulse Review for AP Physics 1 Category: Exam Prep Date Added: 18 March 2015 - 10:30 AM Submitter: Flipping Physics Short Description: None Provided Review of the topics of Linear Momentum and Impulse covered in the AP Physics 1 curriculum. Content Times: 0:16 Linear Momentum 0:51 Conservation of Momentum 1:26 Types of Collisions 2:29 Newton’s Second Law in terms of Momentum 3:16 Impulse 4:11 Impulse during collisions Multilingual? View Video
  23. Name: How to Wear a Helmet a PSA from Flipping Physics Category: Momentum and Collisions Date Added: 18 September 2014 - 03:36 PM Submitter: Flipping Physics Short Description: None Provided Wearing a helmet is all about impulse, change in momentum and the force of impact. This video illustrates why you should secure your helmet to your head. Thank you very much to Colton and Jean Johnson who said yes when I asked them if I could film myself riding my bike off their dock. Colton also said, “In my 75 years of living, that has got to be the strangest request I have ever received.†Thank you also to Chris Palmer and Larry Braak for being my on-site camera operators. Content Times: 0:19 Are you wearing your helmet? 0:53 Riding my bike off the dock into the lake. 2:15 The helmet falls off 2:40 Newton’s 2nd Law 4:08 Impulse approximation 5:01 Which variables are NOT dependent on helmet status 6:23 Impulse 7:01 What variables does wearing a helmet change 7:57 This one time I was riding my bike … 8:50 A contrasting story Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! More Flipping Physics Videos: The Classic Bullet Projectile Motion Experiment & Dropping Dictionaries Doesn’t Defy Gravity, Duh! 1¢/minute View Video
  24. When cars get into a collision, why does it seem like half the car gets turned into debris? The answer is simple, conservation of momentum. In elastic collisions, like car crashes, the projectiles have a lot of momentum. If a head on collision occurred where the cars stayed perfectly rigid, the occupants would have a huge change in momentum. This used to happen before modern safety regulations. Modern cars are designed to "give", absorbing a large amount of momentum and keeping the occupants from experiencing the same change in momentum, saving lives and livelihoods in the process. It is a lot better to lose more of your car than losing more of your body. Enjoy: http://www.youtube.com/watch?v=-nyfRwMQ-Tk
  25. 100 downloads

    Problem set combining conservation of momentum, projectile motion, and friction.
    Free
×
×
  • Create New...