Jump to content

eclark

  • entries
    30
  • comments
    16
  • views
    3,117

Entries in this blog

Physics of Hot Air Balloons

Hot air balloons are very fascinating mechanisms in that they allow humans to fly without physically flying. Hot air balloons consists of a basket used to carry people, an envelope (the top piece), and a burner which consists of several megawatts is also present. When heat is released from the burner, it creates buoyancy. This is because the hot air is less dense than the cooler air that surrounds it. This is known as Archimedes' principle, which states that any object regardless of its shape th

eclark

eclark

Potato Phone Charger

I have always wondered if the experiment you always see on T.V. is actually possible and after further research, I realized that it is possible to charge your phone with a potato. The reason this is able to happen is because the potato acts like an electrolyte. When a galvanized nail and copper are inserted into the potato, they act as electrodes. Atoms from the galvanized nail- which is made of zinc- dissolves into the potato as a positively charged ion. This leaves two negatively charged atoms

eclark

eclark

Physics of Jet Packs

It would be very cool to ride around using jet packs, but unfortunately some of Earth's physical properties limit our use of them. Unlike birds, humans are not aerodynamic meaning that it very hard to keep us afloat. To do this, we must solely rely on thrust and to generate this thrust, a large amount of fuel is needed. Unfortunately, the more fuel needed, the heavier the jet pack becomes. This requires more fuel to lift the weight and the problem just continues. Because of this dilemma, jet pac

eclark

eclark

Physics of Credit Cards

While at work the other day, I was extremely bored so I decided to think of blogpost ideas. During this time, I was starring at the credit card machine and I thought it would be interesting to learn the physics behind credit cards. Credit cards are an interesting system that uses a magnetic strip to store information. Credit cards use Faraday's Law which allows current to go through the coil in it. This current goes through simple amplification and this creates binary code. The signal is then re

eclark

eclark

Toothpick Star

The toothpick star is an interesting experiment in which a person aligns 5 toothpicks broken in half into  the shape of a star. The toothpicks must be closely put together like the image shown however and the halves must be connected by a small piece of toothpick.  To make the toothpicks into the shape of a star, you must drop a droplet of water onto the center. Once this is done, the water will move into the toothpicks at the same velocity. This will cause the toothpicks to spread apa

eclark

eclark

Northern Lights

The northern lights also known as the aurora borealis is one of natures most beautiful phenomenons. Occurring in high latitude regions of the world near the magnetic poles, the northern lights are caused  by high-energy charged particles from the Sun colliding with molecules in the Earth’s atmosphere. As solar wind passes Earth, Earth's magnetic field traps some of it. The electrons and ions that make up the wind travel towards the magnetic poles. The molecules that were already present in the E

eclark

eclark

Popping Popcorn

Popcorn- especially movie theater popcorn- is one of my favorite foods. Until now, I have never thought to explore the science behind popping popcorn kernels. The metamorphosis from a kernel to popcorn involves several physics concepts including thermodynamics and bio-mechanics. To start off, the kernel must heat to a temperature above 100 degrees Celsius. The water inside then turns to vapor and forces its way into the hard endosperm of the kernel. When this occurs, the inside becomes  a molten

eclark

eclark

Physics of Skydiving

I have always been fascinated by the idea of skydiving, so I thought it would be interesting to learn the physics behind it. When a person skydives, they are accelerating downward do to the force of gravity. Simultaneously, the amount of air resistance increases as the faster the skydiver falls. Once the force of air resistance is as large as the force of gravity, the skydiver no longer accelerates because the force of gravity equals air resistance. This equality is known as terminal velocity. T

eclark

eclark

Survival Hack (Crayon Candle)

In the instance of an emergency and there are no flashlights or candles present, a crayon can be used as a candle. A crayon is similar to a candle in that both are made of a variety of waxes. The only difference is that is a crayon is enclosed in a paper tube while a candle has a wick at the center. The paper tubing of the crayon can be used as a wick which allows the fire to burn steadily down the crayon. When a candle is lit, heat travels at a remarkably fast velocity toward the wax body benea

eclark

eclark

Silver Egg Illusion

The silver egg illusion is an experiment in which an egg is charged over a candle until it is completely covered in soot. Once the egg is completely covered, it should be dunked into a cup of water. The egg turns silver because the soot particles are hydrophobic so only the top part of the soot will be wet. The surface tension supports the water in between each grain of soot and a layer of air between the water and the soot forms. Because the surface of the water reflects light very well due to 

eclark

eclark

Will it Leak?

The answer is no. This image seems too good to be true, but this experiment is completely possible. The reason the pencils are able to go through the plastic bag without leaking is because of the material of the Ziploc bag. The plastic baggie is made up of polymers which are long chains of molecules that are flexible. When the pencil is pokes through the bag, it slips in between the chain of molecules. They then make a seal around the pencil which ensures that water will not leak out. 

eclark

eclark

Physics of Doctor Strange

A couple of months ago, I watched Marvel's Doctor Strange. The physics of the movie really fascinated me, so i decided to delve deeper and learn about the physics of this very interesting movie. Doctor Strange discusses the idea of the multiverse. The multiverse is the hypothetical set of possible universes, including the universe in which we live. These universes make up everything that exists: the entirety of space, time, matter, energy, and the physical laws and constants that describe them.

eclark

eclark

The Final Day of Blogmas

Today is the final day of Blogmas. For this very special day, I will find the frictional force of a child riding on sled. The average mass of a 10 year old child is 31.9 kg. To find the normal force I multiplied the acceleration due to gravity by the mass of the child and got 312.62N. The coefficient of between snow and plastic is .3, so the force of friction is between the sled and the ground is 93.786N. 

eclark

eclark

Blogmas Day 7

For the 7th day of Blogmas, I will discuss how long it will take Christmas cookies to cool to 75° F once they are taken out of the oven. For this calculation I will use Newton's Law of Cooling. This law states that the rate of cooling is proportional to the temperature difference between the object and its surroundings; therefore, dT/dt = k(T-TC) with Tc  the constant temperature. To find this calculation, I first found Tc to be 70° F because my house temperature is kept at this constant. Next,

eclark

eclark

Blogmas Day 6

For the fifth day of Blogmas, I will discuss a specific scene in the movie Home Alone. At one point in the movie, two burglars enter the house because they believe nobody is home. Little do they know Kevin is still home and ready to protect himself. At one point, he swings a paint bucket and it hits one of the burglars. I thought it would be interesting to calculate the length of the string the paint bucket is attached to using the equation T=2π+(L/g)^(1/2). The period of the paint bucket is 4s

eclark

eclark

Blogmas Day 5

For the fifth day of Blogmas, I will be discussing the physics of singing Christmas carols. When someone is singing, they emit sound waves. Because sound waves are mechanical waves, they are required to travel through a medium. When traveling through this medium, the particles vibrate creating a frequency which is measured in vibrations per second or hertz. In turn, the higher the frequency, the higher the pitch of the singer. The loudness or quietness of the singer is measured by the amplitude

eclark

eclark

Blogmas Day 4

A Christmas Story is an iconic Christmas movie, so today I decided to discuss the physics of one of its well known scenes. Ralphie's friend Flick is triple dog dared to stick his tongue to the pole by the kids in the school yard. Unfortunately, when he sticks his tongue to the pole, it gets stuck and the fire department must come to save him. The reason his tongue gets stuck is because the metal pole is a great conductor of heat. The thermal energy from your body is transferred into the pole fas

eclark

eclark

Blogmas Day 3

For day 3 of Blogmas, we are going to discuss the physics of Christmas lights. It is important to find Christmas lights wired in parallel because the set of lights will still work if one light blows. This way you will not go through the struggle of hanging all of your lights just for fail when you turn them on.Lights that do not work when one bulb breaks are wired in series. In series , electricity must flow from one bulb to the next. In a parallel, each light is on its own circuit to the power

eclark

eclark

Blogmas Day 2

For today's Blogmas, I thought it would be interesting to calculate the force inflicted upon an ornament when it falls off of a Christmas tree. I have a 7ft Christmas tree so I decided to calculate the force exerted on an 35g ornament from this height assuming the ornament is placed at the top of the tree. F=mg therefore the force of the ornament when it hits the ground is .343N. I thought it would also be interesting to calculate the power of the ornament as it is falling. Using conservation of

eclark

eclark

Blogmas Day 1

For the first day of blogmas I decided it would be interesting to calculate how many reindeer it would take to carry Santa's load of toys. First, I found that there are approximately 2 billion children in the world (people under the age of 18). The average reindeer can pull about 136 kg and we can assume that children receive an average of 5kgs worth of gifts. Using this information, if can be found that Santa will need approximately 73.5 million reindeer to help him deliver his presents.

eclark

eclark

Velocity of My Dog

I have a little black shih Zhou poodle mix named princess who loves to jump on and off of the couch. I thought it would be interesting to calculate the velocity of my dog right before she hits the ground. To do this I used the conservation of energy theorem mgh=.5mv^2. The Masses cancel out, g is 9.8m/s^2 and the height of my bed is approximately .91 meters. After determining all of the variables, I found her velocity to be about 7.67m/s

eclark

eclark

Why Does Toast Always Land Buttered Side Down?

Before writing this blog post, I could not think of anything to write. After sitting in front of my computer for about 15 minutes thinking of an idea, I started to stare at my toaster. Finally, I realized I could write about the velocity of toast when it pops out. I then proceeded to do further research and in the process I discovered that toast always lands buttered side down. The reason for this is  due to the height of kitchen tables. Usually they are about waist height. As a result, the toas

eclark

eclark

Happy Halloween!

Today is Halloween, so I decided to calculate the speed of a fun sized snickers when dropped into a trick-or-treater's bag. The mass of a fun sized snickers is approximately 17 grams. The average height of a 10 year old is 138.4 cm. With this information you can either use kinematics or conservation of energy. I chose to use kinematics and used the equation.  Vf^2 = Vo^2 + 2aΔx. Assuming that the candy is dropped from rest, falls completely vertical and neglecting air resistance, the final veloc

eclark

eclark

The Pringles Ringle

The Pringles Ringle is one of the latest challenges that people are trying to undertake. Thanks to physics, this interesting experiment is able to occur. The key to building it is to make sure that the base is sturdy.  Once you have a solid base, you must insert a Pringle in between two other Pringles to achieve the circular shape. By doing this, the Pringle will stay clamped down because there is a force applied to hold it down. From there, you can keep building up and up The Pringles on top st

eclark

eclark

Teleportation

Recently I watched a documentary about the possibility of teleportation. Scientists have discovered that through entanglement and superposition particles can be teleported transported to different locations. Entanglement is the idea that links the quantum states of two particles even when they are separated.The distance between the particles does not matter, so they can be on other sides of the universe and still be entangled. Many particles have been teleported by scientists recently because th

eclark

eclark

×
×
  • Create New...