Jump to content

Search the Community

Showing results for tags 'Vector'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Physics News
    • Announcements
    • News Headlines
    • Physics In Action Podcast
  • General
    • Introductions
    • APlusPhysics Alumni
    • Site Suggestions & Help
    • Homework Help
    • Labs and Projects
    • Break Room
    • TV & Movie Physics
    • Video Discussions
    • STEM Discussion
  • Course Meeting Rooms
    • Honors and Regents Physics
    • AP Physics 1/2
    • AP Physics C

Categories

  • APlusPhysics Guides
  • Books
  • AP Physics 1/2
    • General / Other
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Impulse and Momentum
    • WEP
    • Rotational Motion
    • Oscillations
    • Fluids
    • Thermodynamics
    • Electrostatics
    • Circuits
    • Magnetism
    • Waves
    • Modern Physics
    • AP Exam Prep
  • AP Physics C
    • General / Other
    • Kinematics
    • Dynamics
    • WEP
    • Momentum & Impulse
    • Rotation
    • Gravitation
    • Oscillations
    • Electrostatics
    • Circuits
    • Magnetism
    • Induction
    • Exam Prep
  • Regents / Honors Physics
    • General / Other
    • Math Review
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Momentum & Impulse
    • Work, Energy, Power
    • Electricity
    • Magnetism
    • Waves
    • Modern Physics
    • Exam Prep
  • Simulations / Models

Blogs

  • TestUser's Blog
  • Physics in Flux
  • Mr. Powlin
  • Blog willorn
  • Blog awalts
  • Santa Claus is REAL!!!
  • Blog coltsfan
  • Blog rWing77IHS
  • Blog soccergirl
  • Blog hoopsgirl
  • Blog caffeinateddd
  • Blog Sbutler93
  • Blog PhysicsInAction
  • Blog bazinga
  • Blog WoWAngela
  • Blog probablykevin
  • Blog NewFoundGlory
  • Blog DANtheMAN
  • Blog Soccerboy2003D
  • Blog moe.ron
  • Blog challengerguy
  • Blog bxh8620
  • Blog darkassassin
  • Blog ohyeahphysics
  • Radio
  • Blog jade
  • North Salem High School AP-B Physics Blog
  • Blog landshark69
  • Blog Tiravin
  • Blog flipgirl
  • questioning everything
  • emma123321's Blog
  • Blog goNavy51
  • Blog MrPhysics
  • Sara T's Blog
  • hollyferg's Blog
  • theo12345's Blog
  • Blog lemonlime799
  • Stardust's Blog
  • Blog lacrosse12
  • Blog xcrunner92
  • Blog Bob Enright
  • Blog Swagmeister11
  • Blog ThatGuy
  • Blog Kapow
  • Blog Doctor Why
  • Blog [not]TheBrightestBulb
  • Blog Wunderkind5000
  • Blog daboss9
  • Blog OffInMyOwnWorld
  • Fg = (Fizzix)(Girl)
  • Blog 136861
  • Blog Albert Hawking
  • Blog gburkhart
  • Blog AldTay
  • Kat's corner
  • Danielle17's Blog
  • Mermaids Lagoon
  • RaRaRand
  • rtsully829's Blog
  • Patchy's Blog
  • skyblue22's Blog
  • HaleighT's Blog
  • dwarner's Blog
  • JBrown3's Blog
  • Christina H.'s Blog
  • Do cats always land on their feet?
  • LilBretz's Physics Blog
  • jay day
  • Blog smithr7
  • Blog keeth
  • PepperJack's Blog
  • jbilodeau's Blog
  • Blogging by Nathaniel
  • Physics Blog
  • leiser24's Blog
  • blog 1
  • Blog jmcpherson82
  • Blog HannahG
  • Blog AlphaGeek
  • Blog sarabuckbee
  • Blog mathgeek15
  • Yay physics!
  • Blog goalkeeper0
  • Blog lshads
  • Dodgeball
  • Blog caffeinefueledphysics
  • Blog midnightpanther
  • CMaggio's Blog
  • Blog bdavis
  • Blog MrMuffinMan
  • Blog denverbroncos
  • Blog DavidStack
  • Blog CharlieEckert
  • Blog SwagDragon15
  • Blog jfrachioni
  • Blog PostMeister
  • NevinO's Blog
  • José P's Blog
  • JDiddyInDaHouse's Blog
  • npignato's Blog
  • Above & Beyond
  • AndrewB's Blog
  • The Awesome Blog
  • Pineapple Grotto
  • physics blog
  • JamesWil's Blog
  • How does Iron Man fly?
  • KC12
  • Physics of Cheerleading
  • Elijah35's Blog
  • Physics?
  • Blog HannahG
  • mgiamartino's Blog
  • ericaplukas' Blog
  • as151701's Blog
  • Physics yeah!
  • TayCro
  • ACorb16's Blog
  • Patricks Blog with friends
  • Patricks Blog with friends
  • CM YAAAAAHHHHH
  • Ben's Post
  • Wise words from Leon Sandcastle
  • What Is A CT Scan
  • Physics Blog
  • Physics Of Videogames
  • ClarkK's Blog
  • Darts
  • Euclidean Blog
  • jfrachioni's Blog
  • Momentumous' Blog
  • goalkeeper0's Blog
  • The Blog of SCIENCE
  • physics on roller coasters
  • physics on swimming
  • physics on softball
  • physics on bike riding
  • The Real Blog, the Best Blog
  • RTB24's Blog
  • Physics!
  • PHYSICS courtesy of Shabba Ranks.
  • physicsguy#1
  • Walsherific Blogging!
  • Give me you're best shot fysics
  • Tired and a little dehydrated
  • bazinga818's Blog
  • TerminalVelociraptor
  • ThatBlogOverThere
  • Blog Having Nothing to do with Physics
  • Sarcasm And Some Physics Too
  • MarcelaDeVivo's Blog
  • martella6's Blog
  • Physics in the real world
  • abbyeschmitz's Blog
  • michaelford3's Blog
  • imani2014's Blog
  • kpluk3's Blog
  • hannahz's Blog
  • Celisse_R's Blog
  • Stephanie528's Blog
  • reedelena's Blog
  • Brittany16's Blog
  • OksanaZ's Blog
  • ihsseniorhill
  • Lynn152461's Blog
  • bailliexx13's Blog
  • hann129's Blog
  • Celeena's Blog
  • necharles17's Blog
  • Ben Shelton's Blog
  • cierraw's reflection on physics class
  • Amanda's Blog
  • Abbeys Blog
  • dspaker's Blog
  • Chanae's Blog
  • Halo Physics
  • Sandra's Blog
  • anna's Blog
  • SabrinaJV's Blog
  • kenzie10's Blog
  • hecht0520's Blog
  • DianeTorres' Blog
  • sputnam14
  • mitchell44's Blog
  • physics
  • happytoast's Blog
  • Basketball44
  • physics around us
  • Theo Cup
  • Merkel's Blog
  • claremannion's Blog
  • maddiejeanne15's Blog
  • Basketball Physics
  • PfFlyer17
  • jackbowes10's Blog
  • mt8397's Blog
  • zach_memmott11's Blog
  • emvan2's Blog
  • michaela1707's Blog
  • Faith DeMonte
  • Physics with Marisa
  • kenzie10's Blog
  • Kirch's Blog
  • theantonioj's Blog
  • Joe13's Blog
  • Zachary Denysenko's Blog
  • perrymoss' Blog
  • perrymoss' Blog
  • Celisse_R's Blog
  • Regents Physics
  • cyan1's Blog
  • Reflection on Physics Class (3rd quarter)
  • physicsgal1's Blog
  • cgl15's Blog
  • Beginner Blogger
  • Reflections on blogs
  • Fezziksphysics' Blog
  • Physics824
  • PhunPhysics's Blog
  • pinkblue2's Blog
  • aphysics15's Blog
  • kphysics15
  • GoArrows15's Blog
  • mphysics' Blog
  • physicsislife's Blog
  • A High Schooler's HP Blog
  • kphysics' Blog
  • dls715's Blog
  • Muchfungophysics!'s Blog
  • apfphysics15's Blog
  • Hot Dog! Is that science?!
  • purple15's Blog
  • sciencegirl123's Blog
  • atrestan15's Blog
  • Seriously, was there homework?
  • #Physicsislife
  • billnyethescienceguy's Blog
  • Novice Blogger
  • Science4Life's Blog
  • adeck15's Blog
  • physicsisawesome's Blog
  • Rules on How to Rule the Kingdom of Physics
  • Rules on How to Rule the Kingdom of Physics
  • Sam's Blogging Blog of Blogginess
  • ck's Blog
  • jack denial's blog
  • PhysX's Blog
  • jgalla's Blog
  • thisregistrationsucks' Blog
  • AP Physics C - The Final Frontier
  • Playground of the Mind with Dan
  • Mike V.'s Physics Blog
  • ariannatorpey's Blog
  • Michael783's Blog
  • Michael783's Blog
  • JessByrnes717's Blog
  • JessByrnes717's Blog
  • kmiller0212's Blog
  • The Kowalski Dimension
  • joshdeutsch's Blog
  • tuttutgoose's Blog
  • tuttutgoose's Blog
  • Kylee's Physics Blog
  • ItownEagl3's Blog
  • Elenarohr's Blog
  • james000345's Blog
  • Blogging Assignment
  • Lia's blog
  • KalB's Blog
  • NatalieB's Blog
  • kyraminchak12's Blog
  • t_hess10's Blog
  • Bootsy:)'s Blog
  • Ameliaâ„¢'s Blog
  • moritz.zoechling's Blog
  • Wibbly Wobbly Timey Wimey Physics
  • Hannah K's Blog:-)
  • That AP Physics C blog doe
  • Mandy's Blog
  • Quinn's Blog
  • jacmags' Blog
  • kelsey's Blog
  • Haley Fisher Blog
  • Jman612's Blog
  • A-Wil's Physics C Blog
  • morganism2.0's Blog
  • mdeng351's Blog
  • heather_heupel's Blog
  • CoreyK's Blog
  • isaacgagarinas' Blog
  • Mary_E27's Blog
  • zach_m's Blog
  • D Best Blog posts
  • Grace21's Blog
  • Grace21's Blog
  • ally_vanacker's Blog
  • natemoore10's Blog
  • The Physics (or lackthereof) of The Hobbit
  • Fee-oh-nuh's Blog
  • Physcics in eating food
  • ErikaRussell's Blog
  • Djwalker06's Blog
  • aschu103's Blog
  • Evan Plattens blog
  • danvan13's Blog
  • AnnieB's Blog
  • Jwt's Blog
  • aj31597's Blog
  • miranda15's Blog
  • miranda15's Blog
  • Monigle123's Blog
  • The Physics of a Slapshot
  • devon000885's Blog
  • devon000885's Blog
  • jakeb168 blog
  • physics of my life
  • Danny's Blog
  • Matts blog
  • Ryanz18's Blog
  • Ryanz18's Blog
  • Alyssa's Blog
  • Tuskee's Blog
  • Physics in Running!
  • konneroakes' Blog
  • B-Reezy64's Blog
  • WanidaK's Blog
  • Physics in falling
  • Physics in falling
  • Physics everywhere
  • The Race
  • NYC physics
  • JamesG's Blog
  • Megan's Blog
  • mikedangelo13's Blog
  • Z824's Blog
  • How Gwen Stacy Died (Physics Version)
  • Harrison's Blog
  • Kgraham30's Blog
  • Physics in the Modern World
  • jazmine2497's Blog
  • yoyo's Blog
  • Colby's Blog
  • Colby's Blog
  • All da Physics
  • Zmillz15's Blog
  • irennkluw's Blog
  • Walter Lewin
  • fminton20's Blog
  • Ryanz18's Blog
  • Ryanz18's Blog
  • Antonio Morales
  • PaperLand
  • stargazer14
  • Hannah's Blog
  • Just Some Thoughts on Physics
  • Nate's Blog
  • Anna's APC Blog
  • JesseLefler
  • A Diver's look at physics
  • Physic
  • IVIR GREAT's Physics
  • Physics Blog
  • Z's Blog
  • ZZ's Blog
  • Alpha Baker Gamma
  • Phyzx
  • a blog about physics
  • Ashley's Blog
  • Life
  • State of the Art Novel InFlowTech 1Gearturbine RotaryTurbo 2Imploturbocompressor One Compression Step
  • Nicole's Blog
  • Phys-X
  • Fun With Physics
  • Physics in the Real World
  • Physics and Video Games
  • Physics C and How it Relates to Me
  • My Life, Baseball and Physics
  • My Journey in Physics
  • CVs Blog
  • Blogs
  • Kerbal Space Program: Nicholas Enterprises
  • Actual Physics from an Actual Physics Student
  • A Blog
  • World of Physics
  • Kayla's Blog
  • So, I guess I signed up for another year of ap physics...
  • Physics take two
  • Dissertation writing service
  • eclark
  • About Me
  • Physics of Video Games
  • An Physic
  • Paramount California University
  • Jeremy Walther
  • The Physics of Swimming
  • Physics Blog
  • RK's Physics Blog
  • AP Physics C Student Blog
  • jrv12's physics blog
  • Captain's Log
  • Physics blogs
  • Important Tips You Should Consider When Searching For A Dissertation Topic
  • About me
  • The Physics Behind Life
  • Aaron's Coverage
  • Home is Where Your Displacement is Zero
  • Dog with a Blog
  • Don't Stop Me Now
  • CLICKBAIT TITLE
  • Soccer News
  • A Queue of Posts
  • Dat Music Kid's Blog
  • Getting the most out of studying
  • Bogart's Blogging Bonanza
  • Foul ball physics
  • GoDissertationHelp
  • Affordable Assignment Help Services for Students

Categories

  • Introductory Concepts
  • Kinematics
  • Dynamics
  • Momentum and Collisions
  • Circular Motion & Gravity
  • Rotational Motion
  • Work, Energy, Power
  • Oscillations
  • Fluid Mechanics
  • Thermodynamics
  • Electricity & Magnetism
  • Sound & Music
  • Waves
  • Optics
  • Modern Physics
  • Space
  • Sports & Recreation
  • Other
  • Regents / Honors Physics Tutorials
    • General
    • Kinematics
    • Dynamics
    • UCM & Gravity
    • Momentum Impulse & Collisions
    • Work Energy & Power
    • Electricity & Magnetism
    • Waves
    • Modern Physics
    • Exam Prep
  • AP-1/2 Physics Tutorials
    • General
    • Kinematics
    • Dynamics
    • Momentum
    • Rotational Motion
    • Work Energy & Power
    • UCM & Gravity
    • Oscillations
    • Fluids
    • Thermal Physics
    • Electrostatics
    • Circuits
    • Magnetism
    • Waves
    • Optics
    • Modern Physics
    • Exam Prep
  • AP-C Physics Tutorials
    • Vector Math
    • Kinematics
    • Dynamics
    • Work Energy & Power
    • Linear Momentum
    • Uniform Circular Motion
    • Rotation
    • Angular Momentum
    • Oscillations & Gravity
    • Electrostatics
    • Circuits
    • Magnetism
    • EM Induction
    • Exam Prep
  • Modeling and Simulation
  • Kerbal Space Program
  • Hewitt Drew-It!
    • Mechanics
    • Electricity & Magnetism
    • Properties of Matter
    • Fluids
    • Thermal Physics
    • Waves
    • Light
    • Modern Physics

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


AIM


MSN


Website URL


ICQ


Yahoo


Jabber


Skype


Location


Interests


Biography


Location


Interests


Occupation

Found 44 results

  1. Name: You Can't Run From Momentum! (a momentum introduction) Category: Momentum and Collisions Date Added: 2017-01-12 Submitter: Flipping Physics Two kids walk through the woods discussing momentum. I mean, who wouldn’t? Okay, fine. It’s a basic introduction to the concept of momentum. Want Lecture Notes? This is an AP Physics 1 Topic. Next Video: Force of Impact Equation Derivation http://www.flippingphysics.com/impact-force.html Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine - Example Problem Please support me on Patreon! Please consider becoming a Flipping Physics Quality Control helper. You Can't Run From Momentum! (a momentum introduction)
  2. Two kids walk through the woods discussing momentum. I mean, who wouldn’t? Okay, fine. It’s a basic introduction to the concept of momentum. Want Lecture Notes? This is an AP Physics 1 Topic. Next Video: Force of Impact Equation Derivation http://www.flippingphysics.com/impact-force.html Multilingual? Please help translate Flipping Physics videos! Previous Video: Instantaneous Power Delivered by a Car Engine - Example Problem Please support me on Patreon! Please consider becoming a Flipping Physics Quality Control helper.
  3. Flipping Physics

    Introduction to Force

    Defining Force. Including its dimensions, demonstrations of force and mass affecting acceleration, showing that a force is an interaction between two objects and contact vs. field forces. Content Times: 0:11 Defining force 0:56 Demonstrating how force and mass affect acceleration 2:15 Demonstrating why a force doesn’t necessarily cause acceleration 4:09 Force is a vector 4:23 A force is an interaction between to objects 4:56 Contact vs field forces 5:38 The force of gravity is a field force 6:19 Face and snow force interaction Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to the Force of Gravity and Gravitational Mass Previous Video: Introduction to Inertia and Inertial Mass 1¢/minute
  4. In order to use Newton’s Second Law, you need to correctly draw the Free Body Diagram. This problem explains a common mistake students make involving the force applied. We also review how to find acceleration on a velocity as a function of time graph. Content Times: 0:22 The problem 0:54 Listing our known values 1:51 Drawing the Free Body Diagram 2:17 A common mistake in our Free Body Diagram 3:32 Solving the problem 4:14 Another common mistake 5:07 Why is the acceleration positive? Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos[/url]! Want [url="http://www.flippingphysics.com/second-law-friction.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/third-law.html"]Introduction to Newton’s Third Law of Motion[/url] Previous Video: [url="http://www.flippingphysics.com/force-vector-addition.html"]Summing the Forces is Vector Addition[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
  5. Flipping Physics

    Summing the Forces is Vector Addition

    Summing the forces is nothing new, it is vector addition. This video compares summing the forces to graphical vector addition. This video builds off the previous video "[url="http://www.flippingphysics.com/three-force-example.html"]A Three Force Example of Newton's 2nd Law with Components[/url]” which you should watch first. Content Times: 0:31 The first example 0:59 The second example 1:20 The third example 1:40 The fourth example 1:58 Using a data table 2:26 Reviewing all the examples visually Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos[/url]! Want [url="http://www.flippingphysics.com/force-vector-addition.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/second-law-friction.html"]Using Newton's Second Law to find the Force of Friction[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url] A giant thank you to [url="http://www.franceslukeaccord.com"]Frances Luke Accord[/url] for letting me use their song “In The Water” from their album “Kandote”. They make wonderful music; you should really check them out.
  6. Name: Using Newton's Second Law to find the Force of Friction Category: Dynamics Date Added: 12 January 2015 - 11:59 AM Submitter: Flipping Physics Short Description: None Provided In order to use Newton’s Second Law, you need to correctly draw the Free Body Diagram. This problem explains a common mistake students make involving the force applied. We also review how to find acceleration on a velocity as a function of time graph. Content Times: 0:22 The problem 0:54 Listing our known values 1:51 Drawing the Free Body Diagram 2:17 A common mistake in our Free Body Diagram 3:32 Solving the problem 4:14 Another common mistake 5:07 Why is the acceleration positive? Multilingual? View Video
  7. Finding the net force caused by three brothers fighting over a stuffed turtle. We break one vector in to components and find the components of the net force in order to solve for the net force. Content Times: 0:16 My 3 brothers 0:29 The problem 1:13 The givens 1:55 Drawing the Free Body Diagram 2:39 Breaking the Force of Chris in to its components 4:09 Redrawing the Free Body Diagram 4:54 Finding the components of the net force 5:47 Finding the net force 7:10 Finding the direction of the net force 8:02 Shouldn’t Turtle accelerate? 8:39 Directing my brothers Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Want [url="http://www.flippingphysics.com/three-force-example.html"]Lecture Notes?[/url] Next Video: [url="http://www.flippingphysics.com/force-vector-addition.html"]Summing the Forces is Vector Addition[/url] Previous Video: [url="http://www.flippingphysics.com/force-vs-time.html"]Force vs. Time on a Dynamics Cart[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url] Thank you very much Ken, Jim and Chris, my three brothers, for agreeing to be in this video!
  8. Name: Summing the Forces is Vector Addition Category: Dynamics Date Added: 06 January 2015 - 01:59 PM Submitter: Flipping Physics Short Description: None Provided Summing the forces is nothing new, it is vector addition. This video compares summing the forces to graphical vector addition. This video builds off the previous video "View Video
  9. Name: A Three Force Example of Newton's 2nd Law with Components Category: Dynamics Date Added: 16 December 2014 - 02:17 PM Submitter: Flipping Physics Short Description: None Provided Finding the net force caused by three brothers fighting over a stuffed turtle. We break one vector in to components and find the components of the net force in order to solve for the net force. Content Times: 0:16 My 3 brothers 0:29 The problem 1:13 The givens 1:55 Drawing the Free Body Diagram 2:39 Breaking the Force of Chris in to its components 4:09 Redrawing the Free Body Diagram 4:54 Finding the components of the net force 5:47 Finding the net force 7:10 Finding the direction of the net force 8:02 Shouldn’t Turtle accelerate? 8:39 Directing my brothers Multilingual? View Video
  10. Flipping Physics

    Weight and Mass are Not the Same

    Three major differences between weight and mass are discussed and three media examples of weight in kilograms are presented (and you should know that weight is NOT in kilograms). Content Times: 0:18 Base SI dimensions for weight and mass 1:25 NASA: weight in kilograms 1:38 Michio Kaku: weight in kilograms 1:52 Derek Muller of Veritasium: weight in kilograms 2:30 Weight is a vector and mass is a scalar 2:53 Weight is extrinsic and mass is intrinsic 3:52 Comparing weight and mass on the Earth and the moon 4:45 Space elevators Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Want [url="http://www.flippingphysics.com/weight-not-mass.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/free-body-diagrams.html"][color=rgb(0,0,0)][font=Helvetica][size=3]Introduction to Free Body Diagrams or Force Diagrams[/size][/font][/color][/url] Previous Video: [url="http://www.flippingphysics.com/force-of-gravity.html"]Introduction to the Force of Gravity and Gravitational Mass[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url] Weight in kilograms in the media: NASA: [url="http://www.nasa.gov/audience/foreducators/rocketry/home/what-was-the-saturn-v-58.html#.VElQ7r5gngp"]What Was the Saturn V?[/url] The Physics of the Impossible by [url="http://mkaku.org"]Michio Kaku[/url] Thank you Derek Muller of [url="https://www.youtube.com/user/1veritasium"]Veritasium[/url] for letting me use a 10 second clip of one of your videos. I hope you agree that, as promised, I did not deride you. Pictures: Moon [url="http://upload.wikimedia.org/wikipedia/commons/e/e1/FullMoon2010.jpg"]http://upload.wikimedia.org/wikipedia/commons/e/e1/FullMoon2010.jpg[/url] - By Gregory H. Revera (Own work) [CC-BY-SA-3.0 ([url="http://creativecommons.org/licenses/by-sa/3.0"]http://creativecommons.org/licenses/by-sa/3.0[/url]) or GFDL ([url="http://www.gnu.org/copyleft/fdl.html"]http://www.gnu.org/copyleft/fdl.html[/url])], via Wikimedia Commons International Space Station - [url="http://commons.wikimedia.org/wiki/File%3AISS_after_completion_(as_of_June_2006).jpg%20By"]http://commons.wikimedia.org/wiki/File%3AISS_after_completion_(as_of_June_2006).jpg[/url] By NASA [Public domain], via Wikimedia Commons from Wikimedia Commons Earth - you won’t find the permissions for that picture here, because I took that picture and so I OWN IT!!! Yep, i took that picture. [Did you really read this far? wow.] It’s actually a picture of Science on a Sphere at The Detroit Zoo. [url="http://www.detroitzoo.org/attractions/science-on-a-sphere"]http://www.detroitzoo.org/attractions/science-on-a-sphere[/url]
  11. Defining the Force of Gravity or Weight and Gravitational Mass. We also determine the dimensions for force in both Metric and English units. Content Times: 0:11 Defining the Force of Gravity or Weight 1:09 Defining Gravitational Mass 2:12 The direction of the Force of Gravity 2:47 Determining the dimensions for force 4:09 The English unit for force 4:54 Slug vs. Blob Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Want [url="http://www.flippingphysics.com/force-of-gravity.html"]Lecture Notes[/url]? Next Video: [url="http://www.flippingphysics.com/weight-not-mass.html"]Weight and Mass are Not the Same[/url] Previous Video: [url="http://www.flippingphysics.com/force.html"]Introduction to Force[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url] More about [url="http://hyperphysics.phy-astr.gsu.edu/hbase/mechanics/slug.html"]slugs[/url] and [url="http://www.traditionaloven.com/culinary-arts/weight/convert-imp-blob-unit-of-mass-to-slug-mass-unit-imperial.html"]blobs[/url]: [url="http://commons.wikimedia.org/wiki/File%3AIsaac_Newton%2C_English_School%2C_1715-20.jpg"]Picture of Newton[/url] - Attributed to 'English School' (Bonhams) [Public domain], via Wikimedia Commons
  12. Name: Weight and Mass are Not the Same Category: Dynamics Date Added: 10 November 2014 - 10:20 AM Submitter: Flipping Physics Short Description: None Provided Three major differences between weight and mass are discussed and three media examples of weight in kilograms are presented (and you should know that weight is NOT in kilograms). Content Times: 0:18 Base SI dimensions for weight and mass 1:25 NASA: weight in kilograms 1:38 Michio Kaku: weight in kilograms 1:52 Derek Muller of Veritasium: weight in kilograms 2:30 Weight is a vector and mass is a scalar 2:53 Weight is extrinsic and mass is intrinsic 3:52 Comparing weight and mass on the Earth and the moon 4:45 Space elevators Multilingual? View Video
  13. Name: Introduction to the Force of Gravity and Gravitational Mass Category: Dynamics Date Added: 05 November 2014 - 09:47 AM Submitter: Flipping Physics Short Description: None Provided Defining the Force of Gravity or Weight and Gravitational Mass. We also determine the dimensions for force in both Metric and English units. Content Times: 0:11 Defining the Force of Gravity or Weight 1:09 Defining Gravitational Mass 2:12 The direction of the Force of Gravity 2:47 Determining the dimensions for force 4:09 The English unit for force 4:54 Slug vs. Blob Multilingual? View Video
  14. Name: Introduction to Force Category: Dynamics Date Added: 2016-10-27 Submitter: Flipping Physics Defining Force. Including its dimensions, demonstrations of force and mass affecting acceleration, showing that a force is an interaction between two objects and contact vs. field forces. Content Times: 0:11 Defining force 0:56 Demonstrating how force and mass affect acceleration 2:15 Demonstrating why a force doesn’t necessarily cause acceleration 4:09 Force is a vector 4:23 A force is an interaction between to objects 4:56 Contact vs field forces 5:38 The force of gravity is a field force 6:19 Face and snow force interaction Want Lecture Notes? Multilingual? Please help translate Flipping Physics videos! Next Video: Introduction to the Force of Gravity and Gravitational Mass Previous Video: Introduction to Inertia and Inertial Mass 1¢/minute Introduction to Force
  15. It is not obvious in all relative motion problems how to draw the vector diagrams. Sometimes the velocity of the object with respect to the Earth is not the hypotenuse of the velocity vector addition triangle. Here we address how to handle a problem like that. Content Times: 0:15 Reading the problem 0:40 Translating the problem 1:52 Visualizing the problem 2:17 Drawing the vector diagram 3:33 Rearranging the vector equation 4:40 Redrawing the vector diagram 5:30 The Earth subscript drops out of the equation 5:51 Solving part (a): solving for theta 6:40 Solving part (b ): solving for the speed of the car relative to the Earth 7:48 Understanding the answer to part (b ) Want [url="http://www.flippingphysics.com/relative-motion-angle.html"]Lecture Notes[/url]? Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Next Video: [url="http://www.flippingphysics.com/inertial-mass.html"]Introduction to Inertia and Inertial Mass[/url] Previous video: [url="http://www.flippingphysics.com/relative-motion-components.html"]An introductory Relative Motion Problem with Vector Components[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url] "[url="http://commons.wikimedia.org/wiki/File:Nombre_de_los_vientos.svg#mediaviewer/File:Nombre_de_los_vientos.svg"]Nombre de los vientos[/url]". Licensed under Public domain via Wikimedia Commons
  16. Projectile motion is composed of a horizontal and a vertical component. This video shows that via a side-by-side video demonstration and also builds the velocity and acceleration vector diagram. Content Times: 0:14 Reviewing Projectile Motion 1:00 Introducing each of the video components 1:40 Building the x-direction velocity vectors 2:15 Building the y-direction velocity vectors 3:12 Combing velocity vectors to get resultant velocity vectors 3:41 Showing how we created the resultant velocity vectors 4:47 Adding acceleration vectors in the y-direction 5:28 Adding acceleration vectors in the x-direction 5:45 Completing the Velocity and Acceleration diagram 5:58 The diagram floating over clouds, i mean, why not, eh? Want [url="http://www.flippingphysics.com/components-of-projectile-motion.html"]Lecture Notes[/url]? Multilingual? Please help [url="http://www.flippingphysics.com/translate.html"]translate Flipping Physics videos[/url]! Next Video: [url="http://www.flippingphysics.com/skateboarding.html"]Skateboarding Frame of Reference Demonstration[/url] Previous Video: [url="http://www.flippingphysics.com/bullet.html"]The Classic Bullet Projectile Motion Experiment[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
  17. Two vehicles driven at different speeds parallel to one another is a great one dimensional way to introduce relative motion. When viewed from above using a quadcopter drone, it is even better! Thanks Aaron Fown of [url="http://www.firstuav.co"]FirstUAV[/url] for providing the wonderful, non-terrestrial viewpoint. Content Times: 0:35 Visualizing the example 1:31 Understanding the subscripts 2:46 Visualizing the Velocity of the minivan with respect to the Prius 3:33 Solving for the Velocity of the minivan with respect to the Prius 5:05 Negative vectors in relative motion 6:11 Understanding when a subscript drops out of the equation 7:05 Solving for the Velocity of the Prius with respect to the minivan 8:17 Review / visualizing multiple velocities Want [url="http://www.flippingphysics.com/introduction-to-relative-motion.html"]Lecture Notes[/url]? Multilingual? Please help [url="http://www.flippingphysics.com/translate.html"]translate Flipping Physics videos[/url]! [size=4]Next Video: [color=rgb(0,0,0)][font=Helvetica]An Introductory [url="http://www.flippingphysics.com/relative-motion-problem.html"]Relative Motion Problem[/url][/font][/color][/size] Previous video: [url="http://www.flippingphysics.com/skateboarding.html"]Skateboarding Frame of Reference Demonstration[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
  18. This relative motion problem addresses how to deal with vectors that do not form right triangles. Content Times: 0:15 Reading the problem 0:32 Translating the problem 1:29 Visualizing the problem 2:30 Drawing the vector diagram 2:57 Haven’t we already done this problem? 3:31 How NOT to solve the problem 4:06 How to solve the problem using component vectors 4:40 Finding component vectors 5:58 Redrawing the vector diagram 6:20 Finding the magnitude of the resultant vector 8:02 Finding the direction of the resultant vector 9:15 Showing the resultant vector angle Want [url="http://www.flippingphysics.com/relative-motion-components.html"]Lecture Notes[/url]? Multilingual? [url="http://www.flippingphysics.com/translate.html"]Please help translate Flipping Physics videos![/url] Next Video: [url="http://www.flippingphysics.com/relative-motion-angle.html"]Relative Motion Problem: Solving for the angle of the moving object[/url] Previous video: An Introductory [url="http://www.flippingphysics.com/relative-motion-problem.html"]Relative Motion Problem[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url] "[url="http://commons.wikimedia.org/wiki/File:Protractor_Rapporteur_Degrees_V3.jpg#mediaviewer/File:Protractor_Rapporteur_Degrees_V3.jpg"]Protractor Rapporteur Degrees V3[/url]" by Scientif38 - Own work. Licensed under Creative Commons Zero, Public Domain Dedication via Wikimedia Commons "[url="http://commons.wikimedia.org/wiki/File:Nombre_de_los_vientos.svg#mediaviewer/File:Nombre_de_los_vientos.svg"]Nombre de los vientos[/url]". Licensed under Public domain via Wikimedia Commons
  19. Name: Relative Motion Problem: Solving for the angle of the moving object Category: Kinematics Date Added: 07 October 2014 - 03:02 PM Submitter: Flipping Physics Short Description: None Provided It is not obvious in all relative motion problems how to draw the vector diagrams. Sometimes the velocity of the object with respect to the Earth is not the hypotenuse of the velocity vector addition triangle. Here we address how to handle a problem like that. Content Times: 0:15 Reading the problem 0:40 Translating the problem 1:52 Visualizing the problem 2:17 Drawing the vector diagram 3:33 Rearranging the vector equation 4:40 Redrawing the vector diagram 5:30 The Earth subscript drops out of the equation 5:51 Solving part (a): solving for theta 6:40 Solving part (b ): solving for the speed of the car relative to the Earth 7:48 Understanding the answer to part (b ) Want View Video
  20. Name: An Introductory Relative Motion Problem with Vector Components Category: Kinematics Date Added: 02 October 2014 - 09:52 AM Submitter: Flipping Physics Short Description: None Provided This relative motion problem addresses how to deal with vectors that do not form right triangles. Content Times: 0:15 Reading the problem 0:32 Translating the problem 1:29 Visualizing the problem 2:30 Drawing the vector diagram 2:57 Haven’t we already done this problem? 3:31 How NOT to solve the problem 4:06 How to solve the problem using component vectors 4:40 Finding component vectors 5:58 Redrawing the vector diagram 6:20 Finding the magnitude of the resultant vector 8:02 Finding the direction of the resultant vector 9:15 Showing the resultant vector angle Want View Video
  21. Name: Introduction to Relative Motion using a Quadcopter Drone (UAV) Category: Kinematics Date Added: 23 September 2014 - 03:21 PM Submitter: Flipping Physics Short Description: None Provided Two vehicles driven at different speeds parallel to one another is a great one dimensional way to introduce relative motion. When viewed from above using a quadcopter drone, it is even better! Thanks Aaron Fown of View Video
  22. Name: Demonstrating the Components of Projectile Motion Category: Kinematics Date Added: 12 August 2014 - 10:30 AM Submitter: Flipping Physics Short Description: None Provided Projectile motion is composed of a horizontal and a vertical component. This video shows that via a side-by-side video demonstration and also builds the velocity and acceleration vector diagram. Content Times: 0:14 Reviewing Projectile Motion 1:00 Introducing each of the video components 1:40 Building the x-direction velocity vectors 2:15 Building the y-direction velocity vectors 3:12 Combing velocity vectors to get resultant velocity vectors 3:41 Showing how we created the resultant velocity vectors 4:47 Adding acceleration vectors in the y-direction 5:28 Adding acceleration vectors in the x-direction 5:45 Completing the Velocity and Acceleration diagram 5:58 The diagram floating over clouds, i mean, why not, eh? Want View Video
  23. This time in our projectile motion problem, we know the displacement in the y-direciton and we are solving for the displacement in the x-direciton. We could you use the quadratic formula and I even show you how, however, I also show you the way I recommend doing it which avoids the quadratic formula. Content Times: 0:14 Reading the problem 0:55 Comparing the previous projectile motion problem to the current one 1:16 Breaking the initial velocity in to its components 1:44 Listing the givens 2:27 Beginning to solve the problem in the y-direction 3:08 The Quadratic Formula! 5:49 How to solve it without using the quadratic formula. Solve for Velocity Final in the y-direction first 6:59 And then solve for the change in time 8:12 Solving for the displacement in the x-direction 9:01 Showing that it works 9:43 The Review Want [url="http://www.flippingphysics.com/another-projectile-motion.html"]Lecture Notes[/url]? Next Video: Understanding the [url="http://www.flippingphysics.com/range-equation.html"]Range Equation[/url] of Projectile Motion Previous Projectile Motion Problem: [url="http://www.flippingphysics.com/nerd-a-pult.html"]Nerd-A-Pult[/url] - An Introductory Projectile Motion Problem Want a Nerd-A-Pult? You can purchase one at: [url="http://marshmallowcatapults.com"]http://marshmallowcatapults.com[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]
  24. Name: Nerd-A-Pult #2 - Another Projectile Motion Problem Category: Kinematics Date Added: 03 June 2014 - 12:29 PM Submitter: Flipping Physics Short Description: None Provided This time in our projectile motion problem, we know the displacement in the y-direciton and we are solving for the displacement in the x-direciton. We could you use the quadratic formula and I even show you how, however, I also show you the way I recommend doing it which avoids the quadratic formula. Content Times: 0:14 Reading the problem 0:55 Comparing the previous projectile motion problem to the current one 1:16 Breaking the initial velocity in to its components 1:44 Listing the givens 2:27 Beginning to solve the problem in the y-direction 3:08 The Quadratic Formula! 5:49 How to solve it without using the quadratic formula. Solve for Velocity Final in the y-direction first 6:59 And then solve for the change in time 8:12 Solving for the displacement in the x-direction 9:01 Showing that it works 9:43 The Review Want View Video
  25. An introductory projectile motion problem where you have to break the initial velocity vector in to its components before you can work with it. The Nerd-A-Pult is the perfect tool for showing projectile motion. Content Times: 0:02 Introducing the Nerd-A-Pult 0:43 Demonstrating the marshmallow capabilities of the Nerd-A-Pult 1:18 Reading the problem 2:26 Starting to solve the problem 3:03 What do we do with the initial velocity? 3:45 Solving for the initial velocity in the y-direction 4:27 Solving for the initial velocity in the x-direction 5:13 Deciding which direction to start working with 5:38 Solving for the change in time in the x-direction 6:34 Solving for the displacement in the y-direction 7:54 Proving that our answer is correct 8:58 The Review [url="http://www.flippingphysics.com/nerd-a-pult.html"]Want Lecture Notes?[/url] Next Problem: [url="http://www.flippingphysics.com/measuring-vi.html"]Nerd-A-Pult - Measuring Initial Velocity[/url] Previous Problem: [url="http://www.flippingphysics.com/projectile-motion-problem-part-1-of-2.html"]An Introductory Projectile Motion Problem with an Initial Horizontal Velocity[/url] Want a Nerd-A-Pult? You can purchase one at [url="http://marshmallowcatapults.com"]marshmallowcatapults.com[/url] [url="http://www.flippingphysics.com/give.html"]1¢/minute[/url]

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×