Search the Community
Showing results for tags 'space'.
-
Description and examples of g-forces or number of g’s. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 Equations for g-forces or number of g’s 1:08 Number of g’s when at rest on the surface of the Earth 2:43 Number of g’s when in orbit 3:33 Apparent Weightlessness 4:20 How to experience apparent weightlessness in a car 5:22 Apparent weightlessness examples 6:05 Describing number of g’s again 7:08 More examples of number of g’s Next Video: Gravitational Field Introduction Multilingual? Please help translate Flipping Physics videos! Pr
-
Name: Number of g's or g-Forces Introduction Category: Circular Motion & Gravity Date Added: 2018-01-28 Submitter: Flipping Physics Description and examples of g-forces or number of g’s. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:14 Equations for g-forces or number of g’s 1:08 Number of g’s when at rest on the surface of the Earth 2:43 Number of g’s when in orbit 3:33 Apparent Weightlessness 4:20 How to experience apparent weightlessness in a car 5:22 Apparent weightlessness examples 6:05 Describing number of g’s again 7:08 More examples o
-
Learn why astronauts in the International Space Station appear to have no weight. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 What is necessary for an object to be completely weightless? 2:34 Determining the acceleration due to gravity on the International Space Station 3:41 Why astronauts appear to be weightless 4:55 Why the International Space Station does not fall to the Earth 5:37 Objects in orbit experience apparent weightlessness 5:56 Other examples of apparent weightlessness Next Video: Number of g's or g-Forces Introduction Multil
-
- space
- weightlessness
- (and 5 more)
-
Name: Apparent Weightlessness Introduction Category: Circular Motion & Gravity Date Added: 2018-01-21 Submitter: Flipping Physics Learn why astronauts in the International Space Station appear to have no weight. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:01 What is necessary for an object to be completely weightless? 2:34 Determining the acceleration due to gravity on the International Space Station 3:41 Why astronauts appear to be weightless 4:55 Why the International Space Station does not fall to the Earth 5:37 Objects in orbit experience app
-
- space
- weightlessness
- (and 5 more)
-
Name: Newton's Laws of Motion in Space: Force, Mass, and Acceleration Category: Dynamics Date Added: 2015-10-07 Submitter: FizziksGuy Uploaded on Apr 18, 2010ESA Science - Newton In Space (Part 2): Newton's Second Law of Motion - Force, Mass And Acceleration. Newton's laws of motion are three physical laws that form the basis for classical mechanics. They have been expressed in several different ways over nearly three centuries. --- Please subscribe to Science & Reason: • http://www.youtube.com/Best0fScience • http://www.youtube.com/ScienceMagazine • http://www.youtube.com/FFreeThinker
-
Uploaded on Apr 18, 2010ESA Science - Newton In Space (Part 2): Newton's Second Law of Motion - Force, Mass And Acceleration. Newton's laws of motion are three physical laws that form the basis for classical mechanics. They have been expressed in several different ways over nearly three centuries. --- Please subscribe to Science & Reason: • http://www.youtube.com/Best0fScience • http://www.youtube.com/ScienceMagazine • http://www.youtube.com/FFreeThinker --- The laws describe the relationship between the forces acting on a body and the motion of that body. They were first compiled by Si
-
The Workings of Reflecting Telescopes
running_dry posted a blog entry in Tired and a little dehydrated
The second major type of telescope is the reflecting telescope. The reflecting telescope was invented by Newton and considered an improvement on Galileo's design. Most reflecting scopes still use Newton's design. Reflecting scopes use a wide concave mirror at the back of the tube to bring light to a focal point in front of the mirror which is then usually reflected sideways toward the eyepiece by a flat, angled mirror. There are also compound scopes that work like reflecting scopes but there is a hole in the center of the concave mirror and the mirror at the foal point reflects light back thro -
Last night I happened to look up as I was walking inside at around 10 and noticed that I could see a lot of stars. Like a lot. I am quite a fan of stargazing but despite owning a telescope I have always done it with my naked eyes. But I was in the mood to see some planets in detail so I lugged down the old telescope from the attic and dusted her off only to make a distressing discovery- all the eyepieces were missing (you need those if you want to see anything). My dad and I scoured the dust and cobweb infested boxes in our attic for half an hour but came up empty handed, and I had to resign t
-
This March, the F-35 Lightning II made its first public demonstration at an air show. The U.S. Military is expected to purchase over a thousand of the new jets in total, eventually being put in service with the Navy, Air Force, and Marine Corps. The Air Force version, the F-35A, will be the lightest and most agile. The thrust to weight ratio is over one, meaning that the engine produces more thrust (191 kN!) than the weight of the aircraft. In other words, it is able to speed up while flying 90 degrees to the ground...straight up. The Marine Corps version, the F-35B, is the most power
-
Escape Velocity and its Applications
pavelow posted a blog entry in Blog Having Nothing to do with Physics
The calculation for escape velocity is a pretty simple conservation of energy problem. K at infinity =.5mv2 = 0 because v at infinity = 0 U at infinity = GMm/r = 0 at infinity because r = infinity K=0 U=0 K=U .5mv2 = GMm/r From there it's simple algebra, and escape velocity is ve = sqrt(2GM/r) This equation's applications are seen in the exploration of space. Spacecraft need to reach escape velocity in order to not eventually crash back into the earth's surface. Some satellites are orbiting earth at just above escape velocity, meaning that they are actually spiraling away from th -
Below the atmosphere, we have a little problem called global warming, or just in general high levels of pollution for you non-believers, which is the general degradation of our atmosphere and lakes and oceans due to excessive amounts of waste, brought on by agregious practices and poor waste management. In space, there's Kessler syndrome, the hypothetical scenario where, when the amount of space debris orbiting our planet becomes over-saturated, various "leftovers" from spacecraft will collide and split apart, going on to hit even more debris creating a cascade of small but dangerous shrapnel
-
A tour of the International Space Station
-
The second-largest moon in our solar system, Titan, orbits around Saturn, about 8.5 AU (the distance from Earth to the Sun) away from us, making it a very chilly place. A fairly massive moon (80% more massive than our moon, according to Wikipedia), it has the unique characteristic of having an atmosphere that obscured views of the surface until the launch of the Cassini-Huygens mission in 2004, designed to chart out primarily the Saturn system. A moon with an atmosphere is strange, and interesting. But what makes Titan truly intriguing is the presence of a liquid cycle, akin to our water
-
A lot of games let you fly planes, but when was the last time one let you fly a rocket? While if that has been what you've been looking for in your time-wasting pursuits, wait no longer, for Kerbal Space Program lets you do just that. As the director/god of the aptly named Kerbal Space Program, you have the ability to launch probes, satellites, landers, space planes, and a whole plethora of fancy little stuff. But behind all of this glamour comes (simplified) rocket science. Much like real rocket scientists, you have to design a craft with fuel and power constraints in mind. Going to the
-
Here's something I just stumbled upon a few minutes ago. Its Olympus Mons, Mars' largest mountain. Olympus Mons is also the largest volcano in the solar system and the 2nd tallest mountain in the solar system (behind the Rheasilvia peak on the asteroid 4 Vesta). Olympus Mons is a shield volcano and was formed the same way that the Hawaiian islands were, by lava flows hardening and building up over hundreds of millions of years. The difference is that while the Hawaiian chain was formed by Earths crust moving over a hot spot in the mantle, Mars does not have mobile tectonic plates so the hotspo
- 2 comments
-
- 1
-
-
- olympus mons
- space
-
(and 3 more)
Tagged with:
-
If a random star were to appear in our skies, and you asked an astronomer how far away it was, they couldn't give you an immediate answer. One thing I always took for granted was how these scientists were able to map the night sky, give us a detailed perspective on what was out there in the final frontier. Some of these methods (like how to determine how far away a star is) can be somewhat interesting. Using the right math, many people could triangulate the position of an object, as long there are a few known variables and objects in the field of view. However, on Earth, to calculate how
-
Escape velocity, at the surface of the earth, is just about a whopping 11.2 km/s. This means that, to completely escape the force of earth's gravity, from the surface of the earth with the only outside for being gravity, you would need to be going this speed to escape (ignoring, of course, drag - drag forces at those speeds would rip a spaceship apart). So on my way to physics last friday I thought about how to reach those speeds, without the use of costly rocket fuel. One (although initially very costly solution) could be to have a giant underground tunnel, throughout the entire surface of
-
What I've learned from kerbal space program. TOP 5
caffeinefueledphysics posted a blog entry in Blog caffeinefueledphysics
Okay, so for the last few months in physics we've worked on the kerbal space program, and although my group didn't really accomplish much, i kinda just wanted to finalize a few things that i learned. So there is my top 5 1) Kerbals are easily startled. meaning, these kerbals are astronauts that should have been previously trained and have experienced the forces existing in a spacecraft or spaceplane in the game. clearly this was bypassed as much as the safety measures on my rockets 2) Orbit CAN be achieved, around anything. if you think that you will randomly drift out to space when you
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.