SBG Reflections 3/4 Through the School Year #physicsed #SBG #flipclass

What I’ve learned by implementing Skills Based Grading (SBG) in my physics classroom this year…

  1. The skills required for success on the end-of-year state Regents Physics exam are but a small subset of the skills I teach in my class. I had hoped this was the case — every teacher wants to think they teach beyond the minimum requirements of the curriculum, but having it in front of me in black and white reinforced this, and also allowed me to pick a topic or two for a “deep dive,” without fear of shorting the students on material they need to be successful on their final exams.
  2. Students who take the time to “shore up their learning” and reassess in an ongoing manner quickly learn how to learn in my class, and rarely need the opportunities for continued reassessment. After a few weeks of the SBG program, those who “drink the SBG Kool-Aid” learn exactly what they need to study and execute on their assessments, and therefore are better prepared for the initial assessments with no need to undertake reassessments.
  3. Students who slack during the first part of the year and dig themselves a hole have considerably less success in reassessing a multitude of skills later in the year… at this point the SBG system becomes an exercise in grade improvement instead of learning.  Next year, I plan on putting a two-week limit on reassessments to both save my sanity in grading as well as encouraging students to avoid this situation.
  4. Grades hg clrNot all assignments need to be graded. Many of our labs and hands-on projects serve to build understanding, but a full rigorous assessment of these multi-faceted projects is complicated in an SBG system.  After struggling with this the first half of the year, I realized that I could assess these projects based on a single skill, or at times, not at all.  It’s important to keep in mind the ultimate goal is student learning and understanding, NOT grading.  The more I embrace this fundamental change in thinking, the more freedom I enjoy in designing activities to allow students to build their own understanding.  Grades are NOT the goal, learning is.
  5. Automated scoring / feedback systems for exams is a huge timesaver. Last year I invested in Remark OMR software, which allows me to set up exams and have the results automatically scanned and tabulated, providing separate feedback on any number of skills from the same written assessment.  Without spending hours and hours grading, I take the time to set up a quality assessment up front, program the software to give me the information I need, and the actual grading takes minutes.  Further, by taking the time to set up these assessments now, I’m building a library of assessments I can pull off the shelf in the future.
  6. The flipped classroom videos I created to help students who missed class for various reasons provide an excellent introduction to topics. Toward the second half of the year I began assigning students to watch the videos as homework to introduce and / or reinforce the basic problem solving skills required for the topic under study.  Since I began this practice, activities and labs have gone more smoothly, students have become more independent in their problem solving, and the quality of questions and discussion in the classroom has gone up tremendously.  I would surmise that because students feel more comfortable in the “standardized problem solving” after having watched these videos, they feel more open to taking the next step and pushing their understanding to the next level.
  7. Students who didn’t do their work in the old system didn’t do their work in the new system. It shouldn’t have been a surprise, but the SBG system is not a silver bullet.  Regardless of assessments, classroom styles, etc., I can’t force students to learn.  Only by active engagement and hard work is anything worthwhile undertaken successfully, and my physics classroom is no exception.  You can lead a horse to water, but you can’t make it drink.
  8. My time allotment with students needs more thought. In the words of a colleague of mine, you can take the horse to the water, then hold its head under the water until the liquid soaks through its pours and it ingests the water forcefully.  I’ve tried this brute force method with a few students who I just couldn’t seem to engage this year.  I’ve pulled them in for (in)voluntary extra sessions, hounded them both in class and out, and all but pushed the hand holding the pencil, with mixed success.  In some cases the students have pulled through and improved, but I’m not certain the effort is being focused on the right students.  When I do this, I spend 80% of my time with the bottom of my class — is this really fair to the remainder of the class, those who are engaging and interested?  Further, am I instilling a total hatred of science and physics and school in the students I’m trying to pull along?  This definitely requires more thought.
  9. There is still a place for the “drill and kill” method of problem solving practice. I love inquiry-based activities, and students building their own understanding, utilization of the modeling cycle, but learning how to solve standardized problems quickly and efficiently is also a requirement in our school system, and there really is no substitute for just diving in and practicing.  I’m not advocating this as a “day after day after day” strategy, but without fail, my students’ assessment scores and understanding levels go up when they’ve had the opportunity to work through problem sets and receive feedback on their work.
  10. I am 100% certain I want to continue utilizing SBG in my Regents Physics classes next year. I feel the methodology has clarified our course objectives, reduced student stress, and helped emphasize learning while de-emphasizing grades in our classroom.  Students get detailed feedback on strengths and weaknesses, and those who utilize the system correctly develop individualized learning plans tailored directly to their needs — individualized self-directed differentiation.  Of course, I see many opportunities for improvement in the classroom, things I want to change next year, and items I’m still not sure how to best attack — but implementation of SBG this year has helped both my students and myself, and it has also emphasized my primary goal for students each year: teaching students to be independent learners.

Cleaning up AP-C Magnetism and EM #physicsed

Cleaning up Magnetism and Electromagnetism

As I was looking over the available note handouts for both our magnetism and electromagnetism units, I wasn’t really happy with any of the materials as a “one-stop, everything-you-need” resource to refer back to for the unit.  So, I spent a few days making up some new ones.  Check ’em out!

NewImage

Videos, Khan, and the Flipped Classroom #physicsed #edtech

The past couple years have brought about a flurry of excitement, energy, drama and debate in the world of physics education, and in K-12 education in general.  A lot of great information has been shared, and a lot of misinformation has also been distributed.  As a teacher learning my way in this dynamically charged environment, I think it’s worthwhile to try and distill down some of the hotly-contested topics into what they mean for my classroom.

NewImage

Let’s begin by taking a look at what is being said about some of these topics.  First, the Khan Academy has been receiving substantial notoriety as of late, largely fueled by Bill Gates’ sponsorship.  The Khan Academy began as a project by Sal Khan to create videos to assist his niece in her classes.  In and of themselves, the physics videos can be a helpful review… if you look closely, you can, of course, find a number of opportunities for improvement as well as statements that may lead to misunderstandings, but there is definitely value here when used appropriately.

Second, the “Flipped Classroom” movement has been gaining notoriety of late, even though the concept has been in practice in many classrooms for many, many years.  In its current implementation, the popularized version of the flipped classroom infers teachers creating video lectures for students to watch as their homework assignments outside of class, leaving more valuable in-class time for hands-on activities, active engagement, problem solving and practice where the teacher is available to coach and guide, etc.  This, of course, has been a standard practice in literature classes for many, many years (read the book at home, discuss in class), but the implementation version with teacher-created videos is becoming more and more popular as the technology to create and share videos becomes more accessible.  Further, the independence with which students can access differing information on their own timeline opens up further options for Mastery Learning, which can move the classroom toward an environment where students learn at their own pace.

Search the Internet and it doesn’t take long to find a wide variety of stances on these resources and how they are used.  Taken to the extreme or over-popularized by the media, the true intent of these resources can quickly become distorted.  As an example, some are calling for the use of video lectures to take the place of trained teachers in classrooms, “streamlining” education for all.  This is a dangerous path to take, particularly in the realm of science, as “teaching is really about creating experiences that allow students to construct meaning,” according to Frank Noschese in his Action-Reaction blog, and backed up by volumes of physics education research (PER).

This does not mean, however, that the videos don’t have value.  They can be a resource, a tool, to be used in conjunction with a number of other tools, methods, and strategies to optimize education for each and every student.  Do video lectures by themselves build true understanding?  Of course not!  I think it’s obvious to anyone who has worked in education that building meaningful understandings and connections isn’t facilitated by a passive observation of a lecture, whether delivered through video or in person.  However, using a short video to highlight key “take-away” concepts, reinforce basic applications, facts, formulas, and vocabulary, demonstrate problem-solving methodologies, or to provide a review or synopsis for those who need a refresher or missed a class or two can be a very effective way to individualize instruction to a student’s needs.

Three years ago I began creating videos for my Regents Physics classes, having completed a set of 80+ videos this year covering the entire Regents Physics curriculum (http://www.aplusphysics.com/courses/regents/videos/vid_index.html).  My goal wasn’t to replace my classroom instruction or activities, but rather to provide another tool to help students be successful.  These videos allow students who miss classes for various reasons to come back to class with a head start on their catch-up work.  They also allow me to divert some of the less-effective (but occasionally necessary) direct instruction to “at-home” time, providing more in-class time for activities which build deeper understandings, such as our catapult projects, building of iPod speakers, and water bottle rockets, all which allow students to make connections across concepts and subjects, explore and analyze data to come to their own conclusions, and perhaps most importantly, foster confidence in independent learning.  Finally, students have fed back that these videos can be a great refresher as material gets stale, or at times provides a different look at a given subject, helping solidify areas of confusion.

Last night, for example, I was floored to receive a letter in the mail from a student I’ve never met.  In the letter, the student stated:

“Your videos helped me understand the questions we went over in class. I used your site to study for my midterm… and [now] more fully understand the topics.”

These videos, and others like them, are certainly not “the answer.”  But receiving this unsolicited letter from a student in a district I’ve never visited affirmed for me that they can be a valuable resource, and even if it’s only helping out the occasional student, isn’t that really what our jobs are about — finding a way to reach as many students as possible?

There is no magic bullet in education.  Effective instruction is a constant struggle to best meet the needs of ever-changing individual learners in a constantly changing society.  Strategies that are effective one year may not be effective next year.  Or methods that reach one student may not work for another student.  It is our challenge to try and meet the needs of as many of our students as we can on a day-by-day basis, working to help all of our students reach their potential and succeed.  Research has shown repeatedly that active learning and meaning-making provides deeper, longer-lasting understanding.  History and experience have also taught us that there is a time and place for direct instruction, though few would argue it is a but a small component of a highly effective classroom.

Videos can be used effectively to help meet these needs in different ways for different students, and are in and of themselves neither completely good nor completely evil.  Instead, they are yet another resource in a teacher’s arsenal.  Given the tremendous variety of students and challenges we face every day as educators, I want access to each and every resource I can get my hands on.