Course Review Time – What Works Best? #physicsed

It’s closing in on that time… the dreaded end-of-the-year, when we finish our standard curriculum and begin to intermix “additional topics” of student interest in with review for our standardized final exam.  But how do you keep 25 to 30 students productively across various topics based on individual needs at varying levels of aptitude?

student_girl_reading_on_floor_hg_clr I’ve tried a number of techniques… we cut questions out of old standardized exams and paste them onto unit-specific pages, using these unit-specific pages for practice.  The students not only review the key topics, but also see the range of questions asked in previous years before diving into problem practice.

I’ve given previous exams, with students working through them at their own pace, scoring their exams, then working with me to jointly develop and execute an individualized action plan to attack their areas for improvement before repeating the process.

I’ve incorporated clicker question reviews.  I’ve had students develop their own questions.  We’ve jumped headfirst into hands-on lab exercises requiring knowledge of several “units” tied in together, and we’ve worked through projects to examine applications of physics in the real world.  Each week students perform a different online assignment on one of our key topics, coupled with video podcast reviews of 10-15 minutes in length, in a flipped classroom approach.

With all these methods, implemented in a variety of configurations, I still haven’t found a review method I’m thrilled with.  Nor even satisfied with.  Without fail, the students who least need the review get the most out of the time, and the students who are in dire need of review find ways to avoid strong engagement.

One proposal for this year is to have all students take a practice exam, which is graded with separate scores for each key topic (in the vein of SBG).  Students in need of extra help in any unit are assigned chapters to read along with a problem set from either the APlusPhysics review book or a stand-alone question set.  Students most in need of review are assigned the most work, and students with the least need of review can finish up their work assignments more quickly, leaving the instructor more time with the struggling students.  Each week students engage in another practice exam, again working to build familiarity with the questions, with classes interspersed between online question reviews, practice exams, and instructor-led topical review discussions and guided practice.

I don’t expect to find a magic bullet that addresses all situations, and talking to other teachers I find this to be a very common issue as well.  I’d love to hear what you’ve tried – what’s worked, what hasn’t, and open this question up to the experience of others!

APlusPhysics Regents Course Tutorials Completed!

Whew!  It’s been a long and challenging project, but I am absolutely thrilled to announce that the APlusPhysics.com Regents Physics course tutorial has been completed (well, at least the first revision). I’ve been done with the tutorial less than 20 minutes, and already I’m making notes on additions, modifications, and enhancements, but I think it’s worth taking a moment to step back and look at everything that’s been accomplished.image

A year ago I had never created a web page, and didn’t know the difference between HTML and ELMO. But, with a vision to create a resource specific to the needs of the students I see every day, and with the support of friends and family, I started picking up books, reading web articles, and making many, many designs on paper to script out what I wanted to build.

As of this morning, with the upload of a question bank of more than 500 Regents Physics questions from past years, I’m amazed at how much has been created. The APlusPhysics Regents Tutorials include objectives, explanations, sample problems, FLASH animations, integrated quizzes, videos… just about everything you could ask for in an online resource tailored to a specific course. Further, as the projected progressed, I began to see potential for this resource being used outside my classroom and even outside the scope of NY’s Regents curriculum, and have begun building in further topics of interest to many introductory physics students. Even better, I learned the Regents Physics material better than I could have ever imagined (there’s nothing like digging through 10 years of old exams to help you really learn a course inside and out).

image I wanted this website to be an original work, so not only did I learn webpage design, I also had to learn vector and bitmap graphics, flash animation, basic flash programming, and even a little bit of PHP to make everything work in the background. For an artistically-challenged science guy, I’m pretty amazed with the quality of illustrations I was able to create after reading a few books on the modern tools available!

In support of the static web tutorials, the site also features a discussion forum based on the latest version of vBulletin, integrated student and educator blogs, course notes, calendars, project activities, and even hosting for old episodes of the Physics in Action Podcast.  So what’s next?

I’ve said from the beginning I want to follow up the Regents Physics tutorials with the AP-1 and AP-2 curricula, but with delays from the College Board, we’re all still waiting to find out exactly what those courses will entail (and to what depth).  I have been considering creating a tutorial for AP-C physics, but I’m not certain I see as great a need for such a site, as the AP-C course mirrors many introductory university physics courses, and that material is already widely available throughout the web. With these challenges in mind, I think I’m on hold for creating static tutorial pages for the time being.

This feels like a blessing in disguise, however, as I’ve been quite excited to dive into several other projects. First, I want to expand the build out the Semiconductor Technology Enrichment Program (STEP), a program designed to take the weeks in class after the AP Physics exams and introduce students to basic semiconductor physics and micro/nano technology. Second, I need to spend time planning on the details of the Skills Based Grading (SBG) program I’m planning on implementing in my Regents Physics courses next year. Third, I’d like to continue my work to pre-record video lessons of all the major topics in the Regents Physics course, with the ultimate goal of spending in-class time working on hands-on lab activities, as well as supporting students individually and in small groups, and minimizing the less-effective entire-class-instruction time. Finally, several students have inquired as to whether I might take the course content material on APlusPhysics and expand it into a written mini-book / synopsis for the Regents Physics course. Though initially hesitant, the more I think about it, the more I find value in creation of the written “APlusPhysics’s Guide to Regents Physics.” And oh, by the way, did I mention the list of website enhancements I’ve already started on?

The question, then, is where to start. I oftentimes prioritize items both by “bang for the buck” as well as cost to implement. SBG work will largely occur in late spring and early summer due to some outside interests and external timing constraints. The STEP program may find some external funding in a month or so, and if I can get paid to work on something, why not wait until there’s a bit of income for my time? That really leaves the printed physics guidebook, video mini-lessons, and website revisions. As much as I try to deny it, I know I’ll be working on website revisions by tonight, in tandem with my next project.  So which to tackle next, the video mini-lessons, or the printed guidebook?  Or both? Would love to hear your feedback and thoughts!

And, as with any endeavor of such scale, allow me to again thank all my supporters, colleagues, family members and contributors. This is a huge milestone for APlusPhysics and the culmination of hundreds of hours of frustration and effort, which has already paid for itself in learning and confidence. I’ve come out all the better for it, and I hope this resource helps others say the same.

A Better Feedback and Assessment System?

I’ve been reading Robert J. Marzano’s “Formative Assessment and Standards-Based Grading,” and though I’m nowhere near done with the book, it has sparked a bunch of ideas which I’m not done digesting. Chief among my concerns is making sure that I build a system that works for me in my classroom, meeting my goals and helping my students be successful, regardless of what name, if any, is applied to the system.  SBG, SBAR, formative assessment, skills-based grading – the name isn’t what matters, and perhaps what I end up with isn’t truly any of these, or maybe it’s part of all of these. What matters is that the system meets my goals.

So then, what are my goals?  That’s taken quite a bit of thought to understand what I truly want out of an assessment system.  Following several days of contemplation, here are my initial goals:

  1. A system that easily illuminates the strengths and weaknesses of each student.
  2. A system that allows me to differentiate instruction and activities across individual needs.
  3. A system that provides students a greater sense of ownership over their learning.
  4. A system that promotes responsible independence.
  5. A system that provides me with improved data for planning future instruction.

Sounds simple enough, but when considering all the implementation costs and struggles, I definitely have some concerns and worries.  In principle, a skills-based system where I assess students on individual skills developed from course, district, and state standards, broken down to a fine enough level that students can see exactly where they need to focus their efforts, could be assessment nirvana. Not only would such a system provide terrific insight into individual strengths and weaknesses, but this system would lay the foundation for a more freely structured classroom, with lessons, activities, challenges and further assessments pre-defined and available for students to work through at their own pace based on their own needs!  Think of it – in theory, every individual student in the classroom could be focusing their efforts on the activities that will make them most successful – personalized self instruction with ongoing support and direction from the instructor!

Could it actually work, though?  Are high school students mature enough to handle this responsibility?  I realize, of course, that a vast majority would require ongoing assistance and direction, but this recipe for my idealized classroom could be a recipe for disaster if not implemented very carefully with extremely well-defined boundaries and expectations. And is my idealized classroom truly what’s best for students, or just what I think would be best for students? Am I delusional in considering such a massive change in an already successful classroom?

On the other hand, if I don’t keep pushing forward, taking risks, and attempting change, in many ways I may be neglecting my job as an educator to do everything I can to help my students be successful. My administration has consistently allowed me to take educated risks, knowing I have weighed the costs, potential benefits, and done a reasonable risk assessment.  But this is a big one – high reward potential, absolutely!  Huge investment of time to prepare for such a paradigm shift… and risks which are substantial, and therefore must be carefully considered and mitigated to the best of my ability.

Even after thinking through the downside if my utopian vision of a physics classroom begins to resemble a thermodynamics experiment gone wrong, I think this is a move I have to make. I have colleagues in the teaching community who have implemented or are implementing similar changes… maybe not with quite the same vision, but certainly considerable potential synergies. I have supervisors and administrators in my school willing to support my risk-taking. And most importantly, I have the drive to become the best teacher I can be, to help my students become the best they can be. The moment I’m no longer true to that goal is the moment I should look for a career change.

So, I continue to explore, research, and develop guidelines for next year’s classroom. I have a long way to go toward alleviating my three main concerns at this point, and would appreciate any feedback or thoughts those of you who have already jumped into the SBG/SBAR pool could provide. The current top 3 concerns:

  1. How to efficiently implement varied assessments to streamline data collection across multiple skills with more than 100 students I see each day.
  2. Communicating the system and its advantages to students and parents clearly and precisely.
  3. Fitting my assessment system into the school’s automated grading portal system.

Like I said, a lot more work to be done, so I’d best put down the computer and do some more research.  Thanks for your comments and thoughts!

Aligning Metrics for Success

Stagnation

I need to make some changes in my classroom. I feel as though class performance is stagnating. Sure, I looked at last year’s data, took many opportunities to reflect on what worked and what didn’t, and revised for this year accordingly. I pre-assess, modify, post-assess, and adjust several times a week, if not several times in the same lesson. But it seems no matter what I do, within my current comfort zone there’s still a group of students I’m just not reaching, and I’m not seeing the level of improvement in results I would hope to as I continue to grow as a physics teacher.

So what’s going on? This is the question I’ve been struggling with for several months now. This year seems especially tough. I’ve been told by previous teachers of this class of students that they require a larger push than previous classes, but there’s more to it than that. I find many of my students are more interested in chasing points and grades than they are in learning. After every exam I hear requests for “make-up” tests or points for corrections, yet preparations for the initial assessment are lacking… homework doesn’t get done, and much of the homework that is done is incomplete. Students do the problems they’re comfortable with, and skip the ones they need practice with! I’ve tried grading homework, even though I’m not a fan of “points” as a motivator. This has pushed more students into my classroom for “how-to” help the moment before the assignments are due, but instead of working to truly understand the problem, the students push hard for just enough to answer the problem and then bolt out the door. Learning has taken a back seat to point gathering.

Many who are performing better on standardized assessments come into class bragging about how they didn’t know anything, crammed for a few hours the night before the exam, and then tell their peers (in front of me) that they’ve already forgotten the material. This isn’t building true understanding, and as we all know, physics builds upon itself. It’s a holistic science that takes years to understand. A solid foundation in all the different aspects and applications provides the framework toward making the connections that will later allow for truly understanding the world around us.

I’ve incorporated more hands-on work, practical applications, challenges, authentic assessments, projects, etc. than in any year previous. We’ve built catapults. We’ve modeled motion graphs with cars, with people, by hand, with motion detectors. We’ve investigated crime scenes to understand projectile motion. We’ve analyzed car crashes to understand momentum. We’ve launched a rocket to demonstrate Newton’s 3rd Law… but for many, these activities are becoming an effort in meeting the absolute minimum requirements as quickly and carelessly as possible.

Something has to change.

I feel as though I’m assessing constantly… and in many different ways. Students are given opportunities to demonstrate their learning in a model of differentiation across both interests, current skill level, and media. Want to do your lab report as a poster? A comic book? A rap song? A Powerpoint? A video? A skit? A conversation? A written exam? Sure, why not… Up for the challenge of going a bit beyond the basic expectations? I believe in you, let’s see what you can do. Having trouble nailing down where to start? Let’s talk about goals and work backwards to help you create a plan.

It helps, but something is still missing. I’m assessing work and projects. I’m assessing based on skill and, much as I try to avoid it, effort. I’ve believed that if students put the effort in, the learning will come, and my grading style has reflected this. But students have learned the game, so to speak, and attempt to demonstrate to me a large effort, by showing a large volume of sub-standard work. I want to encourage them to make their learning meaningful. I don’t want my students spending hours and hours each night on physics. I want them engaged and focused in the classroom. I want them spending a reasonable amount of time outside of class working productively to do what they need to in order to be successful. In short, I want them working smarter, not harder.

So then, why am I assessing work? I’m a firm believer after several years in engineering and industrial management that you set up your metrics to drive behaviors. With the right metrics in place, students and employees will work to meet those metrics. I spent more than 10 years at two different companies and in four different jobs preaching this to anyone who would listen. So what happened to change my thinking when I became a teacher?

It seems so obvious when I stop to think about it… especially when my metrics are so clearly defined. I even write my objectives at the beginning of each lesson, and usually share them with my students! I organize and plan my entire curriculum around learning objectives. The objectives, the standards, the proficiencies — these are my true metrics. These are my goals. These are what I need to be grading students on, not work or projects. Where do you go next? Welcome to standards-based grading (SBG). I don’t expect this to be a fix-all utopia of physics teaching. But it’s a step toward measuring and communicating goals and expectations clearly with my students, and that has to be a strong first step.

I don’t have the answers, I don’t even have the questions. But now I at least feel as though I’m on a path to finding the right questions to ask.