• entries
30
22
• views
1,295

I enjoy being a student at IHS and being able to take a lot of classes in the STEM areas. I like to problem solve and create solutions, following them through from design phase to hands on building. Encountering a challenge is rewarding to me, and I believe that is the main reason I picked this class. I also have always been fascinated by concept of putting numbers to nature since I was a kid. To me, physics is like taking a big mess and then breaking it up piece by piece to understand it and bring some order to natural behaviors. That is not to say everything can be, with 100% certainty, explained in the present. After all, there is still theoretical physics and these points of points of possibility can be just as, if not more, exciting.

I look forward to reading all the other posts on here and the topics you guys choose.

-ThePeculiarParticle

## Crash Course on Logic Gates

Have you ever wondered how systems around you function? Like a passing glance at the thermostat and wonder how it maintains the temperature in your house. Well, just like any other system dealing with variables, there has to be logic to tell how other systems should work. In electrical systems, one of the most basic forms of logic comes through chips known as logic gates.

These gates appear on chips, like the one below, where each prong serves a certain purpose. These chips can vary in size, holding a number of gates, but for our purposes, we will look at one with only four.

VDD represents a pin needing to be connected to a voltage source, usually five volts, and Gnd means the pin needs to be connected to ground. The input pins follow the two paths leading into the same end of a gate, while the outputs are represented through single paths. This specific chip is made up of NAND gates which is shown by the shape the pathways lead into and out of.

The main types of gates are referred to as “and”, “or”, and “not”. These gates then have multiple variations I'll discuss below, but these are the basics. Now, how does a circuit relate to logic, I hear you ask. Well, for simplicity, let's assume a circuit either has a voltage of zero or five volts. The zero volts is represented with a 0 and the five volts is represented with a 1. These signals go into a gate, converting it into a designated signal (also a 0 or a 1), used to cause another action.

Below is a table showing the input and corresponding outputs of each gate.

An example would be if I had two inputs, one in the form of a switch and another in the form of a light sensor. I want my cabin to turn it's lights if I hit my switch and it is night time out. When I turn my switch on it sends out a 1. When the sun goes down the light sensor sends out a 1. When both these signals reach an and gate it sends out a 1 to the light inside my house to turn on.

Needless to say, there are systems with hundreds, even thousands, of variables and programmable logic controllers can store strings of gates onto one single chip, but that's a story for another time.

As always thanks for reading! - ThePeculiarParticle

## The Physics in Album Covers

Physics is all around us, and sometimes it is so visually awesome that it can make for great album covers.

Pink Floyd: The Dark Side of the Moon

One of the highest selling albums of all time, and having one of the most identifiable covers of all time, Pink Floyd should rightfully start up this list.

The phenomenon shown is called dispersion of light. This occurs when white light hits an optically permeable surface. In this case, white light is hitting a prism. As white light passes through the prism, all the different components of white light separate by wavelength. This occurs due to each wavelength having a different angle of deviation. Shorter wavelengths, such as violet, have greater angles of refraction than longer wavelength colors, such as red. The result is a splay of colors each aligned in a rainbow to their corresponding wavelengths.

Joy Division: Unknown Pleasures

Another cover which can be easily recognized, or at least will be noticed, is Joy Division’s debut album. What you are actually seeing is a visualization of radio waves from a pulsar, in fact the first pulsar ever discovered. A radio pulsar is a neutron star which is spinning at incredibly high speeds. So this star, with a density ten trillion times denser than lead, is also generating a strong magnetic field from moving electrons. Due to this spin, electrical charges, and magnetic field, a radio signal was received at 1.337 second intervals. The picture above depicts eighty successive periods stacked on top of one another, and was taken straight from The Cambridge Encyclopaedia of Astronomy published in 1977. Despite being in earlier publications, the true creator of the design is not know, but if one thing is for sure, the image can still be found everywhere and this usage in 1979 was only the beginning of its use in pop culture.

The Strokes: Is This It

The cover to The Strokes Is This It was chosen for release of the 2001 album due to its beautiful psychedelic appearance. But what is it? Well, it is a picture taken from inside a bubble chamber. A bubble chamber is used to study electrically charged particles. How it works is that large bubble chambers are filled with incredibly hot liquid hydrogen. As the particles enter the chamber, a piston opens decreasing the pressure in the chamber. Charge particles created an ionized track which vaporizes the hydrogen creating visible bubble trails. Since the hydrogen is transparent, pictures can be taken in all three dimensions, mapping out the movements of the particles. So why is a different bubble chamber photo my profile picture?

Well it has nothing to do with The Strokes. It's just a beautiful image, and that's what made most of these artists choose their own covers. Nature is beautiful in many ways, and being able to explain it with physics makes it just that much more enjoyable.

As always thanks for reading! - ThePeculiarParticle

## Third Quarter in Review

No doubt the course has gotten much harder in the transition to electricity and magnetism. The result is that I've needed to adapt a new approach to the course. I have tried watching videos then filling in my notes with information from the book and vice versa. For me watching the videos first worked much better. So, if anyone finds this blog, I'll certainly recommend that. But one of the most important things I can do is look back at the course and experience as a whole, despite having induction left, and say I wouldn't have it any other way. It's like climbing a mountain and, while it seems like a heavy task at first, the top is now in sight, with a bit of work left. The most exciting part of this year, besides writing these blogs, had to be finally finding where all these formulas came from, such as how work and forces are so interconnected now that we understand integrals and derivatives.

The good news is that it only builds on from here. Well, my group agreed we would do a blog post sharing our future endeavors, and I'm happy to say that I will be attending the University of Rochester to pursue Optical Engineering. It specifically interests me in the area of integrating electrical and digital circuits but, since optics is such a wide field, that can only be compared to dipping my toe in the deep end of an Olympic sized swimming pool. This course has probably prepared me the most, compared to any other course, for what to expect in college, and for that I'm immensely grateful. Thank you FizziksGuy. The road isn't over yet but this year has been a large stepping off point into the next and I can't thank you enough for the help.

This is kinda sad, being one of the last assigned blog posts I do, but it is not the end. There will be one more after this, which I am really excited for, and I will post a couple in fourth quarter.

I legitimately love writing these and need to thank all of my readers and those who gave support, and even criticism, as this was one of the most fun projects I have had this year.

As always thanks for reading! - ThePeculiarParticle

## What Is The Deal With Theremins?

Anyone remotely into science fiction has heard the sound of a Theremin at least once, from its use in most 50’s movie to a variety of later Star Trek and Doctor Who sounds. It has been the sound of the future since its creator Leon Theremin unveiled it in 1928.

Before I explain, what it is it is important you see what it looks like in use. For reference the Theremin playing begins at 1:00.

So how does this machine work? Well, this connects back to our unit on capacitance. The human body has a natural capacitance, so when it moves into an electric field it can disturb it. In a Theremin an electromagnetic field is created by a radio frequency oscillating circuit. The two terminals are connected to two different circuits. The circuit connected to the vertical antenna is connected to a variable oscillator which can produce a range of frequencies, making the player’s movement in the vertical plane control the pitch of the instrument. The horizontal terminal has a fixed oscillator which generates waves at a constant frequency. A hand in the horizontal plane controls the volume of the output. When these two signals are “mixed” and amplified, the result is the haunting pitch you hear above.

This instrument paved the way for the electronic era of instruments to come, so looking back, it is always important we acknowledge our roots.

As always thanks for reading! - ThePeculiarParticle

## THE SECRET BEHIND WIRELESS CHARGING THEY DON’T WANT YOU TO KNOW!!!!

Sorry for the clickbait, I’m just trying to beat The Night King at his own game. The truth is I am just going to tell you what wireless charging is. Sorry to disappoint, but I don’t have a global conspiracy.

I won't do it again.

An emerging technology, which every company Samsung to Tesla are trying to jump on board with, is wireless charging, but believe it or not, this technology has been around since the 1960s.

It’s called induction charging, and, as given by the name, is works through induction. So how does it work? Well, a magnet with a coil of wire wrapped around it is called an inductor. Just as a capacitor stores voltage in an electrical field, when current is run through the wires of an inductor voltage is stored in a magnetic field. Put a device which has another induction coil, within the magnetic field, and the energy will be transformed back into current charging the battery.

So why is such a simple technology just coming into our houses now?

Well, for one, powerful enough magnets and small enough electronics are now becoming cheaper and more readily available by the year. Before, what took a magnet the size of a loaf of bread, can now be put into a charger that sits nicely on top of your nightstand.  Its earliest usage within the home was actually in bulky electric toothbrushes, but now companies have a variety of wire free applications. One of the more talked about use of the technologies is how modifications can be made to Tesla Model S so that it can wirelessly charge by parking over designated spots.

So what are the drawbacks?

Well induction charging is usually 75%-80% as efficient as wired charging, so times to charge are usually slower. No to mention, charging rates drop off further the farther the coils are separated. The efficiency decreases usually by square inverse ratio. The usage of resonant inductive coupling can make this distance much greater, but the final problem is cost. The charging stations alone for inductive chargers are more expensive, not to mention, only the latest lines of devices seem to support wireless charging, and, if you are anything like me, you will not be paying top dollar just to get a bigger screen and a cool charging pad.

In the future, however, I can see this becoming a new norm for phones, as not wearing down and needing to fix a charging port is always a nice additive bonus for consumer and supplier. So be sure to look for this technology in the future.

As always thanks for reading! - ThePeculiarParticle

## On The Topic of Pole Reversals

Based on a variety of evidence, the last time the Earth's magnetic poles flipped was 750,000 years ago. Going off of this, many sources say we could face another flip at any point. Now, before you panic and begin blasting REM out of the nearest speakers, I just wanted to fill you in on what the process looks like.

The process is much longer than most people think when first visualizing it. It is actually a process which is estimated to take 1000-10000 years. To explain why, the main factor behind the Earth's magnetic field is believed to be the liquid iron part of the Earth's core. The alignment of iron and it's flow creates a magnetic field surrounding the Earth. As the iron won't all realign in a matter of days in the transition period, Earth's field appears to grow weaker as orientations move, then multiple different poles may form, until eventually the poles are reoriented and effectively flipped. Will this cause confusion for many electrical systems, animals, and humans? Yes. One of the biggest dangers, however, is the lack of a strong magnetic field protecting Earth from harmful solar flares, which could wipe out modern electrical systems as a whole. This is a very real fear, with a severe storm occurring in 1859 known as the Carrington Event. This storm, even with a fully functioning magnetic field, managed to destroy large amounts of telegraph communications and caused auroras so strong they were seen in the Caribbean. While strong storms like this are rare, weak ones are fairly frequent. So, if the poles were to weaken, even the effects of a weak storm would be very destructive. Humanity would certainly not be the same after a direct hit.

Anyways, don’t panic, much of this is out of anyone's control anyways, besides, even with this threat looming over our heads, we continue to make scientific progress without hesitation, and, like any other hardship, we keep our heads up and move forward. So, to sum it up, the poles won't just flip one morning and be switched the next, it is a process which takes numerous lifetimes.

As always thanks for reading! - ThePeculiarParticle

## Circuit Software in the Classroom

Shown above is an example of a simple circuit designed using circuits.io through Tinkercad.

During class this quarter, I began thinking how a software I once used could be integrated into a lab for students to be able to experiment with electrical components inside, and outside the classroom. The one I specifically have in mind is circuits.io. I began using this for a digital electronics class in 10th grade and it soon became a valuable tool when tinkering. The only thing that has changed is that you now create and edit circuits through www.tinkercad.com.

Being able to create circuit and test whether it will function correctly, before you damage components, is a useful tool when trying to conserve components. You can check voltage, resistance, current, and capacitance within a circuit very easily using tools provided. The user interface is very simplistic and appealing (no spaghetti wires). Also, the inclusion of Arduino simulation is great for tinkerers to test out and write out code without having the physical board on them. While students would not encounter experimental error they would find in the real world, I still believe it would be a valuable tool to help them comprehend the ideal functions of certain components in circuits. I also have not mentioned the best part yet… ITS FREE. This software is definitely a hidden gem which I could see being used in the classroom in the future for not only Physics C, but all physics classes, and I encourage anyone who is mildly curious to sign up for an account and check it out.

## The Physics Behind Transition Lenses

Well, before that snowy and cold winter break, one of the cloudiest cities in the nation was beginning to see the sun. It was while walking around I realized how beneficial my old transition lenses were. Then it hit me, how exactly do they work over and over again. As it turns out, the answer is a simple chemical reaction.

Each transition lens has millions of silver chloride particles. These particles only react when exposed to UV light hence transition lenses do not work when driving. Natural light or light through many windows does not contain light with UV wavelengths. When exposed to UV, the atoms oxidize and separate. The separated chlorine and oxygen then cluster together blocking some of the incoming light. This appears as darkening of lens.

This process then reverses, in the absence of UV light, but at a much slower rate than it occurred. Anyone who has walked from outside into a dark room wearing transitions only to find you can’t see anything with or without glasses knows what I mean. Well they turn back by a completely different process called thermal dependency which takes longer. The analogies I have seen compare the molecules to a pot of boiling water. Molecules which have more energy “open” at a faster rate clearing the lens. If the temperature is warmer the more molecules are left open than in colder weather. The result is that in the cold your lenses become darker and require more time to open and become clear once again. So to summarize, transition lenses rely on the physics of wavelengths of light and thermal dependence to make them an adjusting accessory.

So when you walk out school for summer vacation remembers that physics doesn't stop when you leave the classroom, it happens right before your very eyes.

As always thanks for reading! - ThePeculiarParticle

## What is with the Hype Surrounding Hyperloop?

It is a known fact that the United States is lagging behind in the area of infrastructure. The true problem with this question is how far forward should we upgrade in a world where other countries have passenger bullet trains. A solution to this may come from of a new era of transportation technology referred to as Hyperloops.

The open sourced design was released by a joint team working with SpaceX and Tesla to be modified by the public and worked into a functioning design. The overall concept of this type of transportation surrounds the idea of a large car which travels through a system of tubing located above or below ground. Many designs from here differ with the car being levitated on electromagnets/air, traveling through a vacuum tube system, or being propelled by a fan system. Many companies have stepped in unveiling their prototypes for this system of travel, most recently the company Virgin, who claims their design would reach speeds of 760 miles per hour. To put that in perspective, if a straight track was put between Rochester and New York City, the travel time would only be around 32 minutes. It's a very large claim for a large company who wishes to see a final working route by 2021.

Here is a travel calculator if you wish have a little fun.

Am I skeptical? Yes.

How will a vacuum seal be maintained over hundreds of miles?
How will passengers be slowed gradually in the event of an emergency?

How well can people be protected in a hunk of metal moving over 700 miles per hour?

If there is something like a fire, how would people escape their car if they are surrounded by miles of vacuum tubes?

Then again, around one hundred years ago, people would have had the same questions regarding the thousands of hunks of metal which carry thousands of people through our skies every day. Only the future will truly know what is in store for the technology of transportation.

## Oscilloscope Art

If you have ever seen a black and white horror movie with a mad scientist in his lab chances are that in the background you saw one of these:

Well, this machine is called an oscilloscope and its primary function is to measure signals of voltages in relation to time. By visualizing signals in the X and Y planes, values such as amplitude, frequency, rise time, and distortion can all be measured from the visual representations of waves displayed on the screen. Its applications range from analyzing electrical systems to heart monitors.

In the field this is a valuable tool to measure waveforms, but there is an artistic side to it as well, which is what I am here to talk about. A channel, called  Jerobeam Fenderson, uses an oscilloscope to register audio signals. He uses the audio signals not only as the music for the video, but to create visuals on the screen. This results in some very interesting music videos. This just goes to show that science can go hand in hand with art in many surprising ways.

Here is his basic overview:

Here is one of his music videos:

## Physics Behind a Fly Fishing Cast

Anyone who is friends with me knows I love fishing of any kind. The one which I feel is the most labor intensive per cast is most certainly fly fishing, and know any of the friends I’ve taught even the most basic casts will agree. For those who aren't familiar with fly fishing, it separates itself from any other kind with the type of rod, reel, and cats the user makes. Regular fishing uses a reel where the user casts out in one fluid motion where they wish to go. In fly fishing, the flies, or baits, are so small that the caster needs to swing the line through the air in order to get it anywhere they want. So how are casts of over 100 feet possible with flies which weigh less than a gram? Well it is actually the same principle behind a whip.

A fly cast begins with a person raising the rod tip behind them while keeping tension in the line. Then the caster rockets their wrist forward. This flick of a wrist is all the momentum that is required to rocket the line forward. The small quick movement on the end of the rod translates to an incredibly fast traveling rod tip, acting like a lever arm spanning anywhere between 8 and 10 feet, resulting in a large amount of torque. Once the wrist has finished its flick around 1:30 position, then the momentum is transferred through the rod and to the rod tip which bends similar to a whip. The momentum doesn't stop there though, and this is the secret to a far reaching cast: the line. The momentum is transferred to the line which weighs considerably more than the fly itself in order to travel the needed distance. As the momentum travels from the fisherman’s arm, to rod, to line, the law of conservation of momentum applies. So, when momentum is transferred between each part the mass decreases, resulting in an increasing velocity of said part. By the time it reaches the end of the floating line to the leader, it is whippings through the air at incredible speeds. As mentioned before, this movement parallels the end of a whip.

This slowed down footage of a cast shows the momentum being transferred through all mediums in order to cast the fly.

So, while I can explain the physics behind a cast, I still can't explain why whenever I have the prime opportunity to cast towards a fish, my fly always ends up snagged in a tree. That though is a  problem to be solved another day. I'm guessing it's some kind of undiscovered attractive force between the two.

As always thanks for reading! - ThePeculiarParticle

## Go With the Flow

Ever add too much food coloring or dye to water and wish there was a way to separate it out?

“Yea it happens all the time TPP what about it?” I hear you say. Well I just wanted to show a phenomenon where the mixing of different fluids can be reversed, but it only occurs under certain circumstances.

Laminar flows only occur in situations depending on the viscosity or velocity of a fluid. When fluids mix slower,  there is less chance of a turbulent flow where the creation of eddies. Eddies are what cause substances to mix in other planes than just lateral. This action is immensely harder to reverse due to the chaos of mixing turbulence brings. When Laminar flows occur, the two parts of the mixture only flow in the lateral plane, allowing the layers to slide past one another. The result is that this mixing can be easily reversed by reversing the motion which mixed it originally.

So, I’m afraid the dyed water will remain a cluster of colors, but, on the bright side, you now have a great party trick to show off and impress your friends.

Here is a helpful video on the subject:

As always thanks for reading! - ThePeculiarParticle

## Two Cool Physics Sources

So, as a recap for mid year, I wanted to talk about two types of physics related media . These two  sources have inspired ideas for blog posts, and are things I listen or watch for enjoyment. So without further adieu, here they are:

1. Twenty Thousand Hertz - What is it? Well, it is a podcast about sound. Wait don’t leave just yet... It is a lot better than it sounds, I swear. This labor of love connects the sounds we hear everyday to physics, psychology, ecology, and even history. The topics range, with subjects that could interest most listeners, and I cannot recommend this series enough. If you take anything away from this post, it would be give one a try. One of my favorites is simply titled “Space”, where sound is described interacting with different environments, including what a person’s voice would sound like on different planets. Whatever your taste is there is, an episode for it.

2. The next channel is more for those interested in engineering. It is not as widely known as some other favorites such as VSauce or Mark Rober (both of which I cannot recommend enough), but that's because it is a specific niche. If you are more curious in the engineering designs which have shaped current society and how they work alongside physics, then this is the place to be. Whether you are sure of a future in engineering or only dabble, then this is a good place to find out if something like this is a path which interests you.

As always thanks for reading! - ThePeculiarParticle

## How Different Pitches "Break"’

Inspired by AaronSwims’s blog post title, I wanted to make my own post on a completely different topic. I wanted to focus on resonance and, while we briefly touched upon it last year, I feel the need to write about it. Resonance, in its most basic definition, is “the condition in which an object or system is subjected to an oscillating force having a frequency close to its own natural frequency”. So how do we see this every day? Bang a pot, pan, glass, even sheet metal and you will find that a noise of a certain pitch emanates from it. If there is little dampening (energy lost in other forms), then this frequency is close to that material or objects natural frequency. This natural frequency is what a system oscillates at when not disturbed by a continuous external force. A glass breaker sings loud so that the amplitude of air molecules moving is quite large and transferring more energy. If the pitch matches the resonance frequency, then the amplitudes add up, with the common example being compared to pushing a kid on a swing. Small pushes, over a given amount of time, will eventually lead to the swing having a much larger amplitude than when it started. In a material, such as glass, where it is brittle and prone to imperfections, the frequency and volume of a person's voice has the resonance which results in it shattering into hundreds of pieces.

As always thanks for reading! - ThePeculiarParticle

## ICE ICE BABY!

“Alright stop, collaborate and listen
Ice is back with my brand new invention
Something grabs a hold of me tightly
Flow like a harpoon daily and nightly
Will it ever stop yo I don't know
Turn off the lights and I'll glow.”

Why would I start this blog up with Vanilla Ice’s song “Ice Ice Baby”? Well Ice is the subject of today’s blog. “BUT TPP, HOW MUCH CAN YOU TALK ABOUT ICE?” I hear you ask off in the distance from behind your computer… well, honestly, a lot. I love ice, from chilling hot summer drinks, to fishing through it in the winter. In the Northeast, we get so much of it that you have to not fully hate it to live up here.

Did you know there is more than one type of ice? Actually, there are at least 17! Under normal atmosphere and temperature we see hexagonal ice (or ice I). By changing pressure and temperature, the other forms can be created from here. The table below shows how they are formed. And with hexagonal ice forming polar bonds, it is able to expand up to 9% of its original volume in freshwater. We have all seen the damage this can do in potholes in the road, but how much force does it have? Well ice can withstand 43,511 pounds per square inch before it turns into ice II. So it is very strong, to the point that instead of continuing to expand, it turns into another type of ice altogether.

This table shows a few of the different types of ice and their required conditions they need to form.

The first property I want to discuss is why ice is so slippery. The truth is dry ice is not very slippery at all. The problem occurs when melting begins. This can be either due to increasing temperatures melting the top layer, or the amount of pressure being placed on its surface. Pressure has much more to do with the phenomena than you think as the more pressure something applies to the surface the pressure increases and results in a lowered boiling point. This is an obvious problem for drivers in the winter who slip and slide due to the weight of their vehicles. But, while it can cause chaos on the roads, it is what gives joy in ice rinks everywhere. Ever wonder why skates are blades? That's because it centers all of one's body weight on an incredibly small area in order to maximize psi. The result is a smooth glide across a thin layer of water.

The second property is that it floats on water. I'll gloss over this since it has been ingrained in us since 3rd grade at the latest, but the truth is that this property is one of the most important. If ice simply sank and became denser whenever it froze then it would make it much harder for life to survive during times of cooling. An example would be the microbes found underneath Antarctic ice which haven't seen the light of day in millions of years. The fact it floats helps us in the summer with our hot drinks, but also when I ice fish in the winter. I can confidently place myself on four inches of black ice (not white ice which is much weaker as air is trapped in it) and I know due to its strength and buoyancy my bodyweight will be safely kept out of the freezing water. Ice is never something I mess around with, just because ice is thick in one spot doesn't mean it is anywhere else. I guess I'm just trying to say don't do anything dumb… on a physics board… filled with incredibly bright kids.

Anyways, that's my rant about ice. There's other topics I may touch in the future, such as the triple point of water, but for now I'm just going to chill out. I also have some awesome videos for you guys reading this far.

This video, while sounding eerie and like the ice is breaking, is actually the sound of ice forming. As it expands and grows it creates tiny pressure cracks which give off these odd sounds. This clip shows the full range of the ice singing from bass tones all the way to high pings.

This video is taken from planet Earth and shows another odd behavior of ice as it forms in salt water.

As always thanks for reading! - The Peculiar Particle

## How a Rock and a Hyperdrive Could Defeat the Empire and the First Order

It's never a good idea to go to a science fiction film and look for scientific inaccuracies. That being said, a lot of things from episode VIII a lot of things left a bitter taste in my mouth, but I'm here to talk about one scientific inaccuracy which leaves a Death Star sized hole in the story’s plot for all movies.

The one scene I am referring to occurs near the middle of the film when a large resistance ship, called the Raddus, aims itself at Snoke’s ship, called the Supremacy, and rams into it at light speed. This results in the ship being torn in two and a large explosion. Now everywhere I look people say the ships in star wars move through hyperspace, which is skipping dimension to dimension, but multiple times in the movie the term light speed is used. It's even used in the original trilogy by Han Solo. Also, if they were going through dimensions where they cannot interact with the mass of other things as the canon claims, in theory, the ship would not have hit the other ship. The point being is that I always shut my mind off to the idea of a collision at such speeds in order to enjoy the movies, but this changes all of that. Now, knowing that a ship can collide with another with such energy, it basically invalidates all the efforts of the rebels and the empire in the original trilogy.

A shot of the scene where the Supremacy is struck by the Raddus.

Let's assume that that the ships are going slower than the speed of light, even 95% (284,802,835 m/s). Also, let’s assume that an object does not gain mass as it approaches the speed of light which would make our energy value greater than it already is. Given the estimate for the mass of an X-wing is around 5500 kg, the kinetic energy of one traveling at this speed is 2.2306E+20 J. The energy of the asteroid which killed the dinosaurs was estimated to be about 1E+23 J. While that is on a different magnitude, it would only take a 25,000 kg object to have the same amount of energy. To put that in perspective, that is about 10 of the 2,300,000 limestone blocks which make up the Great Pyramid. So in this sense, a Death Star was never needed. Just strap a engine onto a random large asteroid and hurl it at a planet. No master death star plans, no single point to be used to blow it up., just a rock with a thruster on it. And as for the rebels, they could have done the same thing with the Death Star and lost many less lives. So there's the little rant I have about that scene, which while cool, puts a bigger hole in the plot than it did in that destroyer.

I’m just going to get back to work and pretend that milk scene never happened…

As always, thanks for reading - ThePeculiarParticle

## A Quarter in Review (The Sequel)

Second quarter was a much different quarter than last quarter, specifically the last half. Mechanics ended, giving way to the electricity and magnetism units, and in turn giving me a solid kick in the rear. All other classes are managing to heat up as well, in fact, they have been for a while. I tried doing something different by writing my blogs in a word document, separately from just posting them, to see if I want to add anything. This only resulted I'm me scrapping a few ideas which were mostly written because I had not liked them enough. It also didn't help with staying ahead because no blogs went out. There is a lesson and a half learned. I would say the major success of this quarter was doing a lab in less than 20 minutes because it was so well planned out, and honestly that is a big help for the future. Other than those things, and an 80 question WebAssign, I would say it was a pretty fun and challenging quarter, just as I’ve come to expect. Now that this quarter is coming to an end, it is  time to buckle up and brace for the exams ahead. Good luck everyone!

## The Oh My God Particle

On October 15th 1991, an event which challenged our scientific understanding of our universe occurred.

The particle that was registered is now referred to as the “Oh My God Particle” after the statement blurted out upon detecting it. Under the night sky of Utah’s Cosmic Ray Detector, a particle was recorded going 99.99999999999999999999951% the speed of light. To put that in perspective, that is faster than even the highest recorded speed of a proton recorded in the Large Hadron Collider, which was 99.999999% the speed of light. It takes increasingly more energy to speed up a particle as it approaches the speed of light, making this difference quite significant. This means if we raced the OMG particle against a particle with plank energy ( 0.00000000000000000000049% speed of light), it would take 2.59×1010 the age of the universe for the particle with plank energy to gain 1 cm on the OMG particle.

So how do particles naturally accelerate to these speeds in space? Well that's the question many scientists today are asking. Physicist in Argentina, in the Pierre Auger Observatory, believed they were on the right track when they saw that these types of particles emitted from the hearts of certain galaxies, but over time the data showed this assertion did not hold water.

As of 2014, in the same state where the first  particle was recorded, scientists working the Telescope Array, made up of 500 particle detectors found that  these particles seemed to emanate from one portion of our night sky. This indicated a source much closer than previously thought. As of recently, no further findings have been published. Yet another space mystery we may have a chance of solving in my lifetime, but in the meantime we will just have to look up at the skies and wonder.

As always thanks for reading! - ThePeculiarParticle

## A Summary of Our Top-notch Design

The objective of the lab TheNightKing and I performed this week was to create a functioning top with the given materials of a pencil, 2 paper plates, 6 pennies, and tape. In relation to the engineering design process this would be the problem or objective we need to focus our ideas around.

Our next step would be research, but , due to our lack of time, we pulled from our knowledge gained throughout this past unit and our previous year physics. One of the main principles to keep a top up is angular momentum. The equation for spinning angular momentum is rotational inertia x angular velocity. So we need to spin it as fast as possible and, most importantly, we need to give it the largest quantity of rotational inertia possible. So, ignoring the pencil rod at the moment and plates, we knew we needed to get the pennies as far away from the center as possible since the equation of a mass away from the axis of rotation for a given mass is mr^2.  So, by increasing the radius, we could get a larger quantity of spinning angular momentum.

Stating and listing the requirements would be the next step in the engineering process, but we were already given them in the objective.

The next step is to brainstorm, evaluate, and choose solution. We chose to use the pencil as our main post and then centered and poked it through the two plates. We then taped the pennies to the outskirts of the plate as this would put their mass at the farthest points away from the center of mass as possible.

Our prototype was created and now we began testing. The top originally wobbled so much that it wouldn’t spin so we adjusted the pennies. We Adjusted until we had the top balanced which decreased the wobble dramatically.  That being said, it was not as stable as we ideally would like. This is when FizziksGuy gave us a nudge in the right direction by asking which part was the most unstable. We both noticed that it was the very top of the pencil. In our efforts to make the top more stable, we broke the pencil to a fourth of the size and therefore dramatically lowering the center of mass. Now the top was much more stable as the distance of the center of mass from the ground is substantially less than before.

After all this testing, we felt our top was substantially more stable and adequately addressed the problem, being able to spin for longer than 30 seconds at a time. The last step in the engineering design process is communicating our results which coincidentally are all explained above. Engineers are used not only to create solutions, but to improve on the efficiency of current ones, so to this effect, had we had a longer time frame I am sure the results could have been even better.

As always thanks for reading! - ThePeculiarParticle

## The Sport of Pumpkin Chucking

When I look back to past Thanksgivings, I remember the smell of turkey baking, my sister leaving after the Thanksgiving Day Parade, and clicking over to the Science Channel to watch one of the most prestigious competitions of the year: Pumpkin Chunkin. The goal of the competition is to use a variety of heavy machines to blast pumpkins as far as possible. The different divisions consisted of air cannons,  trebuchets,  torsion, and “centrifugal” machines. While the trebuchets and torsion divisions are the flashiest, and the air cannons blast pumpkins the farthest, the “centrifugal” machines are what I wish to focus on.

Now we are aware that referring to the forces exerted on the pumpkin being referred to as centrifugal does not make sense. The net force acting on the pumpkin as a result of its rotation is actually referred to as centripetal due to it being directed towards the focal point of the machine (center of the circular path). The reason the pumpkin flies is because once it's released, wherever that may be on the rotational path, the instantaneous tangential velocity dictates in which direction the pumpkin will travel.

This diagram shows the behaviors of an object on a rotating path which I mentioned above.

This team is titled “Bad to the Bone”, and besides having a machine which terrifies me from behind a computer screen, their contraption can fling a pumpkin up to 3,245.58 feet. I’ve been doing my research, trying to find a measurement for the pumpkin’s initial velocity, even trying to see how fast the arm gets before it launches the pumpkin, but nothing shows up. I even tried to look at numerous videos, but the arm is always swinging too fast to make any reasonable assumptions. In fact, there is little to no data on ANY of the machines for that matter. I would have loved to calculate the pumpkin’s initial speed or revolutions per minute, but there are too many uncertainties.

Oh well, sometimes you are the pumpkin and sometimes you are the ground. In this case I guess I am the pumpkin as knowing so little leaves me a little… crushed.

I hope everyone had a wonderful Thanksgiving. As always thanks for reading! - ThePeculiarParticle

## What is Onix Made Of?

I was a fan of Pokémon for a very brief time as a kid, but it stopped the same summer it started.  So, when a recent post went around about an Onix’s size compared to a Pokéball, courtesy of etracey99, I was a little interested in the subject.  I began wondering, what exactly is this rock monster made out of?

In order to do this, we need the density of the Pokémon. The first step is to find the volume of this behemoth.  To do this, I gathered information such as that it is 28’ 1’’ in length.  Now this is nice, but since it is made up of a series of boulders, I can’t easily calculate the volume like a cylinder. Instead, I made the assumption each part of the Pokémon was a uniform sphere. I know it is an estimate, but just remember it is an animated monster so please just relax.

Anyways, from the picture above, some string, and some guess work, I calculated the diameter of a single bolder to be the length of Brock’s leg. His height is never given, so, knowing that the average height for a 15 year old is 5’ 7’’, it can be estimated that the diameter of a single rock is 33.5 inches.

From there the length of the Onix at 28’ 1’’ can be converted to 337’’, and divided by 33.5’ to give us a rounded 10 whole boulders which make up the body. The volume of a single boulder is 19,684.89 in^3, so, multiplying by ten for each bolder results in a total volume of 196,848.9 in^3. This seems like a lot, but when translated to metric it results in 3.22577 m^3.

Now, as for the mass, we can get this information from the official Bulbapedia which etracey99 used to gain his information. The mass is 210kg, which seems very low, but I used it in my calculations anyways.

The calculation for density is mass/volume so plugging in (210kg)/(3.22577m^3) resulted in a density of 65.1 kg/m^3 . Now came the time to look it up, and the results shocked me. The closest values it came to were sawdust (64.1 kg/m^3), carbon black powder (64.1 kg/m^3), peanut shell refuse (64.1 kg/m^3), and talcum powder (64.1 kg/m^3).

So there you have it, the rock Pokémon made out of BABY POWDER!!! The science doesn’t really give any closure here. It just proves that things are not always what they seem, but then again, I’m a student trying to rationalize a rock monster.

As always, thanks for reading! –ThePeculiarParticle

## A Quarter in Review

To sum up this quarter, it has had ups and downs, but gladly a majority of it was ups. The biggest lesson I learned is that, while this is an applied calculus class, it is more of a learned calculus class because so much calculus is used in physics before it is learned in the classroom. The best thing to compare it to is a special kind of road trip. You know where you are starting and the final destination and, most importantly, why you need to get there, but the second you look down at your road map, you remember you can’t read, understand symbols, and heck, the road map hasn’t even been fully unfolded yet.

The good news is that you have the resources to figure it out. I remember watching the educator video on air resistance and the use of differential equations and integrals to a level I hadn’t seen before, and while it honestly left me kind of fuzzy, it was a lot of fun knowing that’s where we were going.  I can understand why it can be somewhat jarring, but as a class I know we have the persistence and resources to figure this out. We have the textbook which gives an overview of these principles, the educator videos which can give overviews and practice, the internet is basically an open book where we could self teach ourselves, we have other students, and the man who wrote the textbook is our teacher.

This brings me to our next point. Many people look at this class and see how independent it is. After the first quarter, I’m going to have to disagree with that statement. The support and cooperation of other students in the class is more than I have seen in any other class, both inside and outside of the classroom. If someone takes this class thinking it is meant to be fully independent they will fail. Just remember, there are others to help and deadlines… lots and lots of deadlines.

## A Sonic Boom of Light

That standard blue glow associated with radiation has much more behind it than meets the eye. This phenomenon is called Cherenkov radiation. The blue glow is a result of particles moving faster than the speed of light.

“WAIT THEY CAN’T DO THAT! STOP LYING! OH THE HUMANITY!” I hear off in the distance. Yes, in certain circumstances it is possible. We learned last year about the refractive index which is a ratio of velocity of light in a vacuum ( c ) which is 3x10^8m/s over how fast it can travel in a medium.

The equation is shown below:

The larger the n value, the slower light moves in a certain medium. In water, which is common in most reactors, light travels at 75% of the speed it would in a vacuum. As a result of this, certain particles such as electrons which are shot off as a result of nuclear fission can move faster than light in the particular medium.

The result is like a jet as it flies and creates a sonic boom from over lapping sound waves. The photons emitted by the water collect behind the moving electron and give off a blue light.

The animation bellow shows what it looks like in action.

So, this is not new information to change science as we know it, just a natural behavior which gives off an unnatural glow.

As always thanks for reading. - ThePeculiarParticle

## What Causes Friction?

So, we always talk about the coefficient of friction in dynamics, but we don’t talk about what causes it. The truth is there are multiple factors. The one most people think of is based upon how rough a surface is.  Coarse grit sandpaper requires more force, and takes more material off an object, than fine grit. The same idea applies to smooth objects on a much smaller scale. Even something as smooth as the surface of a polished table, on a much smaller scale, has ridges and valleys. These imperfections are known as asperities (such an odd vocabulary word) and look similar to this.

The top shows asperities between two objects before a load (force) is applied and the bottom shows after.

These ridges and valleys are shaped in a way so that they oppose the movement in the direction the force is being applied. This seems pretty intuitive, but then there are instances of smooth surfaces sticking together, such as gauge blocks or wafers.

I remember hearing about how gauge blocks could be “stuck” together and measured for more specific tolerances, but never understood why. Well the answer is a result of how they are made. Both gauge blocks and silicon wafers are polished very accurately for their uses, resulting in an extremely flat surface. The result is that the asperities are very limited leaving the contact between the two materials at a maximum.

Van der Waals forces then take into effect if limited material or residue is on either surface. To sum up the effect, atoms have electron clouds, and while we ideally picture them as uniform, they naturally are not.  One side will have a slightly greater negative charge and the other will have a slightly greater positive. The surrounding atoms, will align themselves negative to positive resulting in a “sticky” force between them also known as London dispersion force.  It is also important to mention each individual electron cloud’s orientation is momentary, but across all atoms there are enough places where it occurs for the resulting force to be noticeable on a macro scale.

This animation shows Van der Waals force in action.

So, while the rougher a surface becomes the more friction it can have, the same can be said for how smooth a surface is.

This is a very basic overview of what I learned, and I’m sure there is even more science behind these things the higher up you go, and I’ll see if I can update this, but consider this an overview.

I also found a very interesting related video which will be linked bellow.

As always thanks for reading – ThePeculiarParticle

## What Is This and Why Is It Important?

What is this?

Over the summer I participated in Photon Camp at  the University of Rochester with a few classmates. It was an awesome experience by the way! The main reason I’m here is to talk about the project I worked on in a group of 4. Each student had a different project. So, if you need an idea for a blog post, there you go.

My group was studying photolithography which is the process of creating patterns using light. We worked with Professor Bryan McIntire and were able to go into the clean room and actually perform the process on a series of silicon wafers coated in the photoresist. The first step was to coat the plate in primer, which applied via spin adhesion, so that a layer 1.4 micrometers thick was evenly spread across the surface. Then it was time to perform the actual process.

The main component which allows this process to work is the photoresist. There are two kinds: positive, which breaks down when exposed to light, and negative, which polymerizes when exposed to light. We used a negative photoresist when exposing our wafers to light.

We performed two different processes when exposing them. In the first, UV light can be run through a mask, projecting the image of the mask onto the surface coated in the photoresist.  The other option was to laser-write, by placing the wafer under a 405 nanometer laser, exposing the wafer in a designated pattern. The chemical structure of the photoresist is changed, becoming soluble and then is washed away, revealing the Silicon Dioxide layer underneath. The etching process is next, using Hydrofluoric acid to wash away the Silicon Dioxide. Afterwards, the wafer is washed with Acetone, removing the protective layer, and showing the true colors of the wafer. If the piece is multiple layers, then Hydrofluoric Acid would be withheld and another layer of  Silicon Dioxide can be placed over the first layer to act as a base layer for photoresist to be applied onto. In the final step, the Silicon Dioxide between layers is removed, leaving only silicon, creating the final product.

So why is this important?

Large amounts of energy and money go into cooling the information systems we use on a daily basis. As internet usage increases so will the amount of facilities and power needed to support this. It is theorized this system will not be viable in the future without breakthroughs in energy production, but photonics may promise another solution. Using photonics to transmit information does not create nearly as much heat, causing many scientists to look to it as a way to alleviate the dependence on energy used to cool electronics.

The process of making technology more compact is hindered greatly by the amount of transistors which would be located on an integrated circuit. A concept referred to as Moore's Law states that the amount of transistors on a given area for the same price doubles every two years. The process of photolithography is the next step in this process as the resolution achieved using smaller wavelengths allows for a dramatic increase in the concentration in the amount of transistors placed. The resolution achieved by EUV radiation can be 18nm. Looking further past this, in order to get an even better resolution, a process using an electron beam would be needed.  Photonics may hold the solution to the problem it has created.

Equation for resolution (how small the patterns can be) R~ (Wavelength)/(Numerical Aperture)

Here are some pictures of the wafers we made:

This is the first plate which we made light channels on.

This image shows two waveguides(light tunnels) converging.  Each waveguide measures 2 microns across. Some professors use this to study how light rays behave as they get close to one another.

This is the second plate that had a series of patterns etched onto it in order to create different types of diffraction gratings.

These dots were made by drawing lines 5 microns wide and are the same ones shown in the first image of this blog.

This picture shows the edge of a horizontal diffraction grating.

And finally this is the third plate which the universities crest was etched on.

Thanks for reading, and if you have any younger siblings interested in the camp I highly recommend it!

-ThePeculiarParticle