2 posts in this topic

Name: AP Physics C: Rotational Dynamics Review - 1 of 2 (Mechanics)
Category: Rotational Motion
Date Added: 2017-04-28
Submitter: Flipping Physics

Calculus based review of moment of inertia for a system of particles and a rigid object with shape, the derivation of rotational kinetic energy, derivations of the following moments of inertia: Uniform Thin Hoop about is Cylindrical Axis, Uniform Rigid Rod about its Center of Mass and about one end, also the parallel axis theorem, torque, the rotational form of Newton’s Second Law, pulleys with mass and the force of tension, the Right Hand Rule for direction of torque, and rolling with and without slipping.
For the calculus based AP Physics C mechanics exam. Want Lecture Notes?

Content Times:
0:10 Moment of Inertia of a system of particles derivation
1:46 Rotational Kinetic Energy derivation
2:49 Moment of Inertia of a rigid object with shape derivation
3:52 Moment of Inertia of a Uniform Thin Hoop about its Cylindrical Axis derivation
5:31 Moment of Inertia of a Uniform Rigid Rod about its Center of Mass derivation
8:02 Moment of Inertia of a Uniform Rigid Rod about one end derivation
9:16 The Parallel Axis Theorem
11:29 Torque
12:21 Simple torque diagram
14:14 Rotational form of Newton’s Second Law
15:07 Pulleys with mass and the Force of Tension
15:33 The Right Hand Rule the for the direction of torque
16:56 Rolling without Slipping
17:40 Rolling with Slipping

Multilingual? Please help translate Flipping Physics videos!

AP Physics C Review Website

Next Video: Review of Rotational Dynamics for AP Physics C: Mechanics - Part 2 of 2

Previous Video: AP Physics C: Rotational Kinematics Review (Mechanics)

Please support me on Patreon!

Thank you to Sawdog for being my Quality Control individual for this video.



AP Physics C: Rotational Dynamics Review - 1 of 2 (Mechanics)

Share this post


Link to post
Share on other sites

Thanks much!  Looking forward to using these right after our spring break!

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0