Jump to content
Sign in to follow this  
  • entries
  • comments
  • views

Pokeball vs Pokemon

Sign in to follow this  


Here I present to you, the Poke Ball.
Image result for pokeball
The Poke Ball is probably the most recognizable thing from Pokemon besides the popular Pokemon, Pikachu. They are very important to a Pokemon trainer's career of catching Pokemon because they are used to catch and store Pokemon. In the world of Pokemon, when the ball is thrown at a Pokemon, the Pokemon converts to energy and resides inside of the ball, until it is brought forth again by the trainer and the energy is returned to matter.
However, let us look at the size of the Poke Ball vs the size of a Pokemon in a real life setting where turning a creature into energy and back into matter is not realistic. A Poke Ball can change sizes for easy travel but in the most common form, the Poke Ball is 2.5 inches in diameter and has a volume of around 8.18 inches cubed. With this information, we can see that a Poke Ball is not very large.
There are many famous and large Pokemon in the Pokemon universe, but let us examine Onix.Image result for pokemon onix
Onix is a Rock/Ground type Pokemon with an average length of 28'10". Onix is very large, and yet, there are Pokemon even larger than it. If we were to lay Onix flat next to a line of Poke Balls, it would take 139 Poke Balls to cover the length of an Onix. That means that Onix is just under 139 times bigger than one Poke Ball not even considering the average height and width of an Onix.
As much as we would like to catch an Onix, using a Poke Ball would unfortunately not be a feasible option to do so.
Sign in to follow this  


Recommended Comments

So, knowing that Onix has a mass of 210 kg, and the volume of a Poké Ball is .000134 m^3, and say this monster could magically be compacted into that space without any damage, then the density inside that filled Poké Ball is 1,567,164.179 kg/m^3. Besides needing to carry a 210 kg ball around everywhere :gym: there is another problem. To put that in perspective our sun's inner core is calculated to be 150,000 kg/m^3. YIKES... there must be another way they need to be stored without carrying around a pocket nuclear fusion reactor.

Share this comment

Link to comment
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

  • Create New...