# Archive for year 2010

## Unrolling Toilet Paper

3

In his Dec. 17 Action-Reaction blog post titled “Falling Rolls,” one of my heroes of physics instruction, Frank Noschese, details an exercise from Robert Ehrlich’s book Why Toast Lands Jelly-Side Down.

The exercise, a rotational motion problem that challenges students to find the ratio of heights at which you can drop two identical toilet paper rolls, one dropped regularly, the other dropped by holding onto the end of the paper and letting it unroll, such that the two rolls hit the ground at the same time.  It’s a terrific, easy-to-replicate and demonstrate problem that pulls together a great number of rotational motion skills –> finding the moment of inertia, applying the parallel-axis theorem, identifying forces and torques from free body diagrams, and converting angular acceleration to linear acceleration. My students dove into the challenge with zest!

To begin the exercise, we set our variables (H=height for dropped roll, h=height for unrolled roll, r = inner diameter, R = outer diameter), then identified the time it takes for the dropped roll to hit the ground using standard kinematics:

${t_{drop}} = \sqrt {{{2H} \over g}}$

Next, we did the same thing for the unrolling toilet paper roll:

${t_{unroll}} = \sqrt {{{2h} \over a}}$

Of course, if we want them to hit at the same time, the times must be equal, therefore we can show:

${H \over h} = {g \over a}$

Obviously, what we really need to focus our efforts on is finding the linear acceleration of the unrolling roll. To save ourselves some time, we started by looking up the moment of inertia for a cylinder:

$I = {\textstyle{1 \over 2}}M({r^2} + {R^2})$

Using the parallel-axis theorem to account for the unrolled roll rotating about its outer radius we find:

$I = {\textstyle{1 \over 2}}M({r^2} + {R^2}) + M{R^2} = {\textstyle{1 \over 2}}M({r^2} + 3{R^2})$

Next, we can use a free body diagram to identify the net torque on the roll as MgR, and use Newton’s 2nd Law for Rotational Motion to find the angular acceleration:

${{\tau }_{net}}=I\alpha \Rightarrow \alpha =\frac{{{\tau }_{net}}}{I}=\frac{MgR}{0.5*M({{r}^{2}}+3{{R}^{2}})}=\frac{2gR}{{{r}^{2}}+3{{R}^{2}}}$

Since linear acceleration can be found from angular acceleration multiplied by the radius of rotation (R):

$a = \alpha R = {{2g{R^2}} \over {{r^2} + 3{R^2}}}$

Finally, since we’re looking for the ratio of the dropped height to the unrolled height:

${H \over h} = {g \over a} = {g \over {{{2g{R^2}} \over {{r^2} + 3{R^2}}}}} = {{{r^2} + 3{R^2}} \over {2{R^2}}} = {3 \over 2} + {{{r^2}} \over {2{R^2}}}$

This conflicts with the results from Noschese’s class, where they derived $\frac{H}{h}=2+\frac{{{r}^{2}}}{{{R}^{2}}}$, however, their demonstration based on their results is very convincing.  Let’s take a look at the difference in ratios using the two derivations:

For a toilet paper roll of inner diameter .0095m and outer diameter R=.035m (our school rolls from the janitor supply closet):

$\frac{H}{h}=2+\frac{{{r}^{2}}}{{{R}^{2}}}=2+\frac{.0095{{m}^{2}}}{.035{{m}^{2}}}=2.074$

$\frac{H}{h}=\frac{3}{2}+\frac{{{r}^{2}}}{2{{R}^{2}}}=1.5+\frac{.0095{{m}^{2}}}{2*.035{{m}^{2}}}=1.54$

It appears that our discrepancies aren’t just differing mathematical representations of the same formula, but that we have a significant difference in our derivations.

In looking over our assumptions, we assumed no air resistance, and also that the unrolling toilet paper roll rotates about its outer radius (is this really true)? I wonder what assumptions were made in Noschese’s class that may account for these differences. It will be interesting to get his class’s perspective on the problem, and provides a great practical study for our students of different approaches to a problem, and the importance of understanding the ramifications of assumptions made in beginning a problem solving exercise!

Update: it appears our calculations are correct.  Check out our high-speed video confirmation!

Slow Motion Toilet Paper Falling

## Physics in a Winter Wonderland

0

Over the river and through the words, to grandmother’s house we go…
the horse knows the way to carry the sleigh through the white and drifting snow – oh!

As part of our family’s holiday season festivities, we went on a horse-drawn sleigh ride through the woods in northwest Pennsylvania. It was a terrific time, with low winds, just a very light dusting of now coming down, and 28 degree temperatures. As  Miss Micro-APlusPhysics (aged 16 months) drove the sleigh, I couldn’t help but think what a terrific multi-faceted physics problem our trip would make… finding the force of friction the horses had to overcome to keep us moving at a constant velocity through the woods, the power supplied, and the energy consumed.

Of course, being a physics teacher, I couldn’t just leave it there:

With nine people on the sleigh, all bundled up, I think we can estimate an average mass of about 70 kg per person (we had a couple lightweights, including the baby.) So, the mass on the sleigh was probably on the order of 650kg. The sleigh itself was made out of fairly solid boards with steel runners, and a quick attempt at lifting up a corner provided a feel for its weight — let’s estimate the sleigh at 550kg, giving us a total load of 1200kg. The weight of the load, then, settles in a 12,000N.

The horses pulled the sleigh from a horizontal tether, so that given the equilibrium condition of the sleigh, we know the normal force had to offset the weight, so the normal force of the snow on the sleigh is 12,000N. Now, to estimate the coefficient of friction.  From the NY Physics Regents Reference Table, we find the coefficient of kinetic friction for a waxed ski on snow as 0.05. This seems like a reasonable esimate for the frozen runner on the snow. Using ${F_f} = \mu N$ we find the force of friction as 600N.

For most of the 20-minute (1200s) journey the horses pulled us at a leisurely constant speed of approximately 1.5 m/s. Therefore, we can assume the applied force of the two LARGE Belgian horses as 600N. The power supplied can be calculated from P=Fv, or (600N)*(1.5 m/s) = 900W. And since they applied that power for roughly 1200s, the work done by the horses can be found from W=P*t=(900W)(1200s)=1,080,000 Joules, or the equivalent of 258 food calories (roughly the nutritional equivalent of one slice of pizza)!

A fun holiday activity providing another opportunity to highlight physics in the world around us.

## 50 Learning Goals For Physics Students

0

What are the “big items” I want my students to take away from my class from each year?  It’s a big question… of course I want them to do a great job on their exams and understand our course content, but I realize that a vast majority of them will forget a majority of physics concepts shortly after leaving the classroom.  What are the enduring understandings and learnings that really matter? Here’s a list of my top 50. What key learnings are missing or overvalued?

1. Learn to teach yourself.
2. Think critically.
3. Appreciate the beauty and patterns in the world.
4. Be confident in your ability to attack an unfamiliar problem.
5. Utilize the scientific method.
6. Learn how to use a spreadsheet.
7. Act like a professional
8. Work productively in diverse groups.
9. The universe is big.
10. We aren’t.
11. Trigonometry is useful.
12. Calculus is just slopes and areas.
13. Forces come in pairs.
14. Doing work transfers energy.
15. Ohms Law V=IR.
16. Examine skeptically.
17. Use a word processor.
18. Learn to recognize what you don’t know (metacognition).
19. Learn how to teach.
20. Use and understand the metric system.
21. Love learning.
22. Be passionate about something.
23. Estimate using orders of magnitude.
24. Work productively, even when your team includes idiots.
25. Forces cause accelerations.
26. Mass/energy is always conserved.
27. Waves transfer energy.
28. Learn to create and analyze graphs.
29. Use the Internet as a learning resource.
30. Write coherently.
31. Learn to study productively and efficiently.
32. Velocity and acceleration are not the same thing.
33. Learn from your mistakes.
34. Draw and use free body diagrams.
35. Gravity is an attractional force between masses.
36. Momentum is conserved in any closed system.
37. Understand the difference between electrical current and electrical potential.
38. Transfer theoretical concepts to practical applications.
39. Read and understand a technical text.
40. Power is the rate at which you do work.
41. Charge cannot be created or destroyed.
42. Isaac Newton revolutionized our understanding of the world.
43. Objects changing direction are accelerating.
44. Reflect on your performance, and adjust your future habits accordingly.
45. Horizontal and vertical motion are independent.
46. Apply problem-solving methodologies in unfamiliar contexts.
47. Learn to create and present effectively using Powerpoint.
48. Take responsibility for your own learning.
49. In the absence of air resistance, all objects fall at the same rate.
50. There is nothing you cannot accomplish if you set your heart and mind to it.

## The Five Most Helpful Things to Remember From HS Physics

3

BY SPECIAL GUEST WRITER: Brendan Hanson

My name is Brendan Hanson. I took Mr. Fullerton’s AP-B Physics course as a junior at Irondequoit High School. Now, I am a first year student at the Rochester Institute of Technology (RIT). I am studying mechanical engineering and loving it. But I have had a lot of help from my previous physics class with Mr. Fullerton. I am here to share with you the five most important things I have walked away from his class with (thus far, they may change as I take more and more physics classes in college).

1. Newton’s Laws.  These basic fundamentals of physics are extremely important to know.  They are useful in that they help to make sure you are doing the problem correctly.  If you use the wrong law, you will become attached to an inclined plane that is wrapped helically around an axis (in other words: screwed).
2. Kinematics Equations for Projectiles.  When studying physics in college, you usually start out with basic kinematics.  This includes projectiles and circular motion and kinetic energy versus potential energy.  Having learned a lot of kinematics in high school physics, the problems that I work on in college have been much easier for me than my friends who have little or no experience with physics.  So remember your kinematics equations; they are some of the most useful equations you will learn.
3. Free Body Diagrams.  Learning how to draw free body diagrams (FBDs) is essential to success in physics.  Draw your FBDs correctly, your answer will probably be correct.  But if you mess up the drawing, there is no chance for a correct answer when dealing with forces on an object.  Learning how to draw these early on in high school is a big help for when you have to do it in college.  So pay attention when it comes to Free Body Diagrams.
4. Significant Figures. I hate to tell you this, but significant figures are important.  I disagree with them and I am sure you do as well, but trust me, college professors use them to no end and have no trouble taking points off when you neglect to use them on homework or tests.  So just keep them in mind and use them every once in a while.
5. Basic Trigonometry.  Trigonometry is probably the most useful math I have learned.  It just keeps showing up in every math-based class I have taken.  Therefore, it is imperative that you learn the basic functions that are used in trig.  It just makes things so much easier if you don’t have re-learn it in college.  Trig comes in handy when dealing with projectiles, forces and work in your physics classes.

Coming out of physics in high school knowing those things has made my college physics class so much easier.  So if you wish to take physics in college, or have to take it, then you should definitely keep these five things in mind as you take this class in high school.

## Aligning Metrics for Success

0

Stagnation

I need to make some changes in my classroom. I feel as though class performance is stagnating. Sure, I looked at last year’s data, took many opportunities to reflect on what worked and what didn’t, and revised for this year accordingly. I pre-assess, modify, post-assess, and adjust several times a week, if not several times in the same lesson. But it seems no matter what I do, within my current comfort zone there’s still a group of students I’m just not reaching, and I’m not seeing the level of improvement in results I would hope to as I continue to grow as a physics teacher.

So what’s going on? This is the question I’ve been struggling with for several months now. This year seems especially tough. I’ve been told by previous teachers of this class of students that they require a larger push than previous classes, but there’s more to it than that. I find many of my students are more interested in chasing points and grades than they are in learning. After every exam I hear requests for “make-up” tests or points for corrections, yet preparations for the initial assessment are lacking… homework doesn’t get done, and much of the homework that is done is incomplete. Students do the problems they’re comfortable with, and skip the ones they need practice with! I’ve tried grading homework, even though I’m not a fan of “points” as a motivator. This has pushed more students into my classroom for “how-to” help the moment before the assignments are due, but instead of working to truly understand the problem, the students push hard for just enough to answer the problem and then bolt out the door. Learning has taken a back seat to point gathering.

Many who are performing better on standardized assessments come into class bragging about how they didn’t know anything, crammed for a few hours the night before the exam, and then tell their peers (in front of me) that they’ve already forgotten the material. This isn’t building true understanding, and as we all know, physics builds upon itself. It’s a holistic science that takes years to understand. A solid foundation in all the different aspects and applications provides the framework toward making the connections that will later allow for truly understanding the world around us.

I’ve incorporated more hands-on work, practical applications, challenges, authentic assessments, projects, etc. than in any year previous. We’ve built catapults. We’ve modeled motion graphs with cars, with people, by hand, with motion detectors. We’ve investigated crime scenes to understand projectile motion. We’ve analyzed car crashes to understand momentum. We’ve launched a rocket to demonstrate Newton’s 3rd Law… but for many, these activities are becoming an effort in meeting the absolute minimum requirements as quickly and carelessly as possible.

Something has to change.

I feel as though I’m assessing constantly… and in many different ways. Students are given opportunities to demonstrate their learning in a model of differentiation across both interests, current skill level, and media. Want to do your lab report as a poster? A comic book? A rap song? A Powerpoint? A video? A skit? A conversation? A written exam? Sure, why not… Up for the challenge of going a bit beyond the basic expectations? I believe in you, let’s see what you can do. Having trouble nailing down where to start? Let’s talk about goals and work backwards to help you create a plan.

It helps, but something is still missing. I’m assessing work and projects. I’m assessing based on skill and, much as I try to avoid it, effort. I’ve believed that if students put the effort in, the learning will come, and my grading style has reflected this. But students have learned the game, so to speak, and attempt to demonstrate to me a large effort, by showing a large volume of sub-standard work. I want to encourage them to make their learning meaningful. I don’t want my students spending hours and hours each night on physics. I want them engaged and focused in the classroom. I want them spending a reasonable amount of time outside of class working productively to do what they need to in order to be successful. In short, I want them working smarter, not harder.

So then, why am I assessing work? I’m a firm believer after several years in engineering and industrial management that you set up your metrics to drive behaviors. With the right metrics in place, students and employees will work to meet those metrics. I spent more than 10 years at two different companies and in four different jobs preaching this to anyone who would listen. So what happened to change my thinking when I became a teacher?

It seems so obvious when I stop to think about it… especially when my metrics are so clearly defined. I even write my objectives at the beginning of each lesson, and usually share them with my students! I organize and plan my entire curriculum around learning objectives. The objectives, the standards, the proficiencies — these are my true metrics. These are my goals. These are what I need to be grading students on, not work or projects. Where do you go next? Welcome to standards-based grading (SBG). I don’t expect this to be a fix-all utopia of physics teaching. But it’s a step toward measuring and communicating goals and expectations clearly with my students, and that has to be a strong first step.

I don’t have the answers, I don’t even have the questions. But now I at least feel as though I’m on a path to finding the right questions to ask.

Go to Top