Jump to content


  • Content Count

  • Joined

  • Last visited

  • Days Won


srossi14 last won the day on September 17 2015

srossi14 had the most liked content!

Community Reputation

1 Neutral

About srossi14

  • Rank
    Advanced Member

Recent Profile Visitors

1,260 profile views
  1. srossi14


    Did anyone else watch that show Minute to Win it? As I was trying to think of something the write my last physics blog post about I thought of one task in particular that contestants were asked to complete. The game was called “Tipsy.” To win, the contestant had to balance three soda cans on their edge by drinking some of the soda to the perfect level. The reason that this task is possible is because of physics and center of gravity. As the amount of soda in the can decreases, the center of gravity of the tilted can shifts as the weight of the can changes due to less liquid, and eventually it
  2. A couple of years ago, my family traveled to San Francisco and one thing we did was see the Golden Gate Bridge. To my disappointment, it was not that bright red that you might see in pictures. Anyway, the Golden Gate Bridge is a suspension bridge that is about three miles long and crosses the San Francisco Bay. With such a massive structure, one might wonder, how on earth does it stay up? Well, it has to do with the “suspension” part. By connecting cables to the middle of the bridge, up to towers, and back to the ends of the bridge, it decreases the force of the weight of the bridge in the mid
  3. Everyone knows that it’s a nightmare to drive in New York City, even if you don’t drive yourself. When I was there last weekend, because we flew there, we had to use cabs and the subway to get around. We encountered many shall we say…interesting drivers. One was yelling at the other cars in a different language, but one of my favorites was the one who thought it was a good idea to drive 60 mph down the streets of Manhattan at 11:30pm. This made for a thrilling trip back to our hotel. Unfortunately for the driver, and us, there were other cars on the road at the time, and people, and stoplights
  4. I’ve already talked a bit about the show Sherlock, but I realized that there is a lot more physics involved to talk about. In one episode, called His Last Vow, Sherlock is shot in the chest. It’s a bit complicated to explain, but in the moments of shock following, he processes what he has to do in order to stay alive. The first decision is whether to fall forward or backwards. Because the bullet didn’t go completely through him his best option is to fall backwards to reduce blood loss. However, because of physics, and conservation of moment, wouldn’t he fall backwards anyway? It would be like
  5. srossi14

    Braking Planes

    This past weekend my family flew to New York City, and as I thought about all the blog posts I had left to write, I tried to figure out what I could write about. And then, as we were landing, I realized that there was a lot of physics in the way a plane stops. Planes are able to travel at extremely high speeds and stop fairly quickly. What I didn’t know though, was what was used in planes as a braking system. It turns out that this can very with different planes. Some use a reverse thrust system, which means that the engines will kind of work “backwards.” By applying a force backwards, the equ
  6. srossi14

    Game On

    When playing tennis, one way to control your shots is by putting spin on a ball. Tennis players do this by applying a force to the ball in different ways. This produces a different torque on the ball, changing its path after it bounces. If a ball is hit “flat” it is pretty predictable that the ball will bounce back at the same angle that it landed. To eliminate some of this predictability, a player can hit different shots that add top spin and back spin. When a player is at net, and their opponent is on the base line, a smart decision might be to hit drop shot. When a drop shot is hit, the tor
  7. srossi14

    Col Legno

    As string player, one way that we can change the sound of the instrument is by playing “col legno.” This means that instead of using the side of the bow with hair on it, sound is made by bouncing the wooden side of the bow on the string. This provides a less lyrical and quieter sound. The reasons behind this change in sound are because of physics. The wooden side of the bow has a smooth surface, which contrasts the surface of the bow hair greatly. Bow hair has tiny grooves in it, which is ten covered in rosin to make it stickier. The wooden side of the bow does not have this. Therefore there i
  8. Who didn’t jump off swings when they were younger? Even as little kids, we knew that the best time to jump was when the swing reached it’s greatest height. By doing so, the maximum amount of gravitational potential energy is converted into kinetic energy when the person becomes a projectile. At a higher height, the velocity of the projectile is greater. If one were to jump off a swing at a lower height during its oscillation, the angle of projection would also be smaller. This could possible lead to the person landing underneath the swing, only to be hit in the head when the swing comes back,
  9. srossi14


    The other day, my seven year old cousin asked me, “how do bubbles work?” and I didn’t really know how to answer. So, I decided to answer her question in a blog post, or at least try to (even though she’ll never see it). It turns out the science behind soap bubbles is a bit complicated and there’s a lot that can be talked about but I think I’ll just focus on one part for now. Did you ever wonder why bubbles are always spherical? Laplace’s law states the larger the vessel radius, the larger the wall tension required to withstand a given internal fluid pressure. In the case of soap bubbles, the s
  10. If you happened to read the previous post about tire swings, hi, I’m the short friend! Anyway… I also noticed that the tire swing was a perfect example of physics in the real world. Tire swings are an example of simple harmonic motion, a pendulum to be exact. When the tire is lifted to a certain height and let go, it swings back and forth, ideally at the same height each time. However, because this is not a perfect world, and factors such as air resistance came into play, this was only somewhat true. Also, with pendulums, the weight of the object on the end of the string/rope does not affect t
  11. When you think about string instruments and physics, the thing that most people think about is the vibration of the strings to make a sound. Notes can be changed by placing fingers at certain intervals to change the length of the string. But another way to change the sound of a violin, is by using a mute. A mute is most commonly made of rubber, and attaches to the bridge of the string instrument. When attached, it adds weight to the bridge and changes the fundamental frequency of the bridge, which also vibrates when the instrument is played. The result is a softer sound, and a muted tone. In o
  12. srossi14


    Over the summer, I had to chance to take a surfing lesson. Surfing requires balance, and coordination, so I was not particularly good at it. One very important aspect of surfing was going from laying down on your stomach, into a standing position. When doing this, it was very important that you were in the right part of the board, so that you were at the center of mass of the system. If you were too far back on the board, the force of the wave moving forward could pull the surf board up and out from under you throwing you backwards. It was also important to keep your body, and center of mass l
  13. srossi14


    Recently we talked about flux and Gausses law. One thing that flux was compared to was the air of a fan hitting a wall. This could also be applied to sailing in a similar sense, even though it doesn’t involve electric fields. Electric flux is the electric field multiplied by the surface area of the plane the e-field is traveling through. When wind hits perpendicular to a sail, the force causes the boat to move. When it gets particularly windy, to prevent the force of the wind from causing the boat to keel over, the mainsail can be shortened. The action of bringing the sail down lower decreases
  14. So I’m sure you’ve all seen it, but if you haven’t you should. A couple weeks ago, the Buffalo Bills kicker was seen on the sidelines slamming his football helmet to the ground after missing a field goal. After doing so, the helmet bounced off the ground, and hit him in the face. I won’t pretend to know anything about football, but I did see this, and I’m not going to lie, I watched the video multiple times. But this embarrassment could have been avoided if he had just known physics and been familiar with conservation of momentum. Momentum is equal to the mass of an object times the velocity,
  15. Canoeing is an activity that requires a lot of upper body and core strength, that and kayaking. When you use a paddle to propel an objet, you are applying newton’s laws of physics. Newton’s second law of physics states that acceleration is dependent on mass and the force acting on the object. Newton’s third law states that for every action there is an equal and opposite reaction. Both of these laws can be seen in canoeing. When the paddle is placed perpendicular to the water, and a person pushes against the water in the backwards direction, the result is the canoe moving forward, opposite the
  • Create New...