Search the Community
Showing results for tags 'friction'.

Kinetic energy and elastic potential energy as functions of time graphs for a horizontal massspring system in simple harmonic motion are demonstrated. Conservation of energy is shown. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:12 The positions 0:40 Kinetic energy 1:49 Elastic potential energy 2:44 Total mechanical energy 5:10 Including friction Next Video: Demonstrating Position, Velocity, and Acceleration of a MassSpring System Multilingual? Please help translate Flipping Physics videos! Previous Video: Simple Harmonic Motion  Graphs of Position, Velocity, and Acceleration Please support me on Patreon! Thank you to Scott Carter, Christopher Becke, and Sawdog for being my Quality Control Team for this video. Thank you to Youssef Nasr for transcribing the English subtitles of this video.

 simple harmonic motion
 kinetic energy
 (and 11 more)

Calculus based review of Newton’s three laws, basic forces in dynamics such as the force of gravity, force normal, force of tension, force applied, force of friction, free body diagrams, translational equilibrium, the drag or resistive force and terminal velocity. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:18 Newton’s First Law 1:30 Newton’s Second Law 1:55 Newton’s Third Law 2:29 Force of Gravity 3:36 Force Normal 3:58 Force of Tension 4:24 Force Applied 4:33 Force of Friction 5:46 Static Friction 6:17 Kinetic Friction 6:33 The Coefficient of Friction 7:26 Free Body Diagrams 10:41 Translational equilibrium 11:41 Drag Force or Resistive Force 13:25 Terminal Velocity Next Video: AP Physics C: Work, Energy, and Power Review (Mechanics) Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan for being my Quality Control help.

 drag
 translational
 (and 19 more)

Name: AP Physics C: Dynamics Review (Mechanics) Category: Dynamics Date Added: 20170323 Submitter: Flipping Physics Calculus based review of Newton’s three laws, basic forces in dynamics such as the force of gravity, force normal, force of tension, force applied, force of friction, free body diagrams, translational equilibrium, the drag or resistive force and terminal velocity. For the calculus based AP Physics C mechanics exam. Want Lecture Notes? Content Times: 0:18 Newton’s First Law 1:30 Newton’s Second Law 1:55 Newton’s Third Law 2:29 Force of Gravity 3:36 Force Normal 3:58 Force of Tension 4:24 Force Applied 4:33 Force of Friction 5:46 Static Friction 6:17 Kinetic Friction 6:33 The Coefficient of Friction 7:26 Free Body Diagrams 10:41 Translational equilibrium 11:41 Drag Force or Resistive Force 13:25 Terminal Velocity Next Video: AP Physics C: Work, Energy, and Power Review (Mechanics) Multilingual? Please help translate Flipping Physics videos! AP Physics C Review Website Previous Video: AP Physics C: Kinematics Review (Mechanics) Please support me on Patreon! Thank you to Aarti Sangwan for being my Quality Control help. AP Physics C: Dynamics Review (Mechanics)

 drag
 translational
 (and 19 more)

Name: Do Antilock Brakes use Static or Kinetic Friction? by Billy Category: Dynamics Date Added: 20160630 Submitter: Flipping Physics Billy analyzes ABS brakes to show the difference between Rolling without Slipping and Rolling with Slipping. He also answers the question in the title of the video, but why would I write that in the description? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:17 ABS Brakes 0:40 Demonstrating Rolling without Slipping and Rolling with Slipping 1:36 How ABS Brakes work 2:18 Analyzing a car tire 3:34 The calculations Next Video: Everybody Brought Mass to the Party! Multilingual? Please help translate Flipping Physics videos! Previous Video: Does the Book Move? An Introductory Friction Problem Please support me on Patreon! Do Antilock Brakes use Static or Kinetic Friction? by Billy

Billy analyzes ABS brakes to show the difference between Rolling without Slipping and Rolling with Slipping. He also answers the question in the title of the video, but why would I write that in the description? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:17 ABS Brakes 0:40 Demonstrating Rolling without Slipping and Rolling with Slipping 1:36 How ABS Brakes work 2:18 Analyzing a car tire 3:34 The calculations Next Video: Everybody Brought Mass to the Party! Multilingual? Please help translate Flipping Physics videos! Previous Video: Does the Book Move? An Introductory Friction Problem Please support me on Patreon!

10 trials to calculate the coefficient of static friction and how to calculate the uncertainty of this measurement. More details about Standard Deviation is in the lecture notes. This is an AP Physics 1 Topic. Next Video: Introductory Kinetic Friction on an Incline Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Static Friction on an Incline Problem Please support me on Patreon!

 standard deviation
 mu

(and 3 more)
Tagged with:

You place a book on a 14° incline and then let go of the book. If the book takes 2.05 seconds to travel 0.78 meters, what is the coefficient of kinetic friction between the book and the incline? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:01 The example 0:13 Listing the known values 1:09 Drawing the free body diagram 1:58 Net force in the perpendicular direction 2:34 Net force in the parallel direction 4:03 Solving for acceleration 5:07 Solving for Mu 5:40 We made a mistake Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Static Friction on an Incline Problem Please support me on Patreon!

 demonstration
 coefficient
 (and 10 more)

Name: Introductory Kinetic Friction on an Incline Problem Category: Dynamics Date Added: 20160616 Submitter: Flipping Physics You place a book on a 14° incline and then let go of the book. If the book takes 2.05 seconds to travel 0.78 meters, what is the coefficient of kinetic friction between the book and the incline? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:01 The example 0:13 Listing the known values 1:09 Drawing the free body diagram 1:58 Net force in the perpendicular direction 2:34 Net force in the parallel direction 4:03 Solving for acceleration 5:07 Solving for Mu 5:40 We made a mistake Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Static Friction on an Incline Problem Please support me on Patreon! Introductory Kinetic Friction on an Incline Problem

 demonstration
 coefficient
 (and 10 more)

A book is resting on a board. One end of the board is slowly raised. The book starts to slide when the incline angle is 15°. What is the coefficient of static friction between the book and the incline? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:01 The example 0:44 Drawing the free body diagram 1:41 Net force in the parallel direction 2:11 Demonstrating why the acceleration in the parallel direction is zero 3:58 Force normal does not equal force of gravity 4:32 Net force in the perpendicular direction 5:07 Return to the parallel direction 6:06 Substituting in numbers Next Video: Calculating the Uncertainty of the Coefficient of Friction Multilingual? Please help translate Flipping Physics videos! Previous Video: Physics "Magic Trick" on an Incline Please support me on Patreon!

Name: Calculating the Uncertainty of the Coefficient of Friction Category: Dynamics Date Added: 20160616 Submitter: Flipping Physics 10 trials to calculate the coefficient of static friction and how to calculate the uncertainty of this measurement. More details about Standard Deviation is in the lecture notes. This is an AP Physics 1 Topic. Next Video: Introductory Kinetic Friction on an Incline Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Static Friction on an Incline Problem Please support me on Patreon! Calculating the Uncertainty of the Coefficient of Friction

 uncertainty
 coefficient

(and 3 more)
Tagged with:

Name: Introductory Static Friction on an Incline Problem Category: Dynamics Date Added: 20160613 Submitter: Flipping Physics A book is resting on a board. One end of the board is slowly raised. The book starts to slide when the incline angle is 15°. What is the coefficient of static friction between the book and the incline? Want Lecture Notes? This is an AP Physics 1 Topic. Content Times: 0:01 The example 0:44 Drawing the free body diagram 1:41 Net force in the parallel direction 2:11 Demonstrating why the acceleration in the parallel direction is zero 3:58 Force normal does not equal force of gravity 4:32 Net force in the perpendicular direction 5:07 Return to the parallel direction 6:06 Substituting in numbers Next Video: Calculating the Uncertainty of the Coefficient of Friction Multilingual? Please help translate Flipping Physics videos! Previous Video: Physics "Magic Trick" on an Incline Please support me on Patreon! Introductory Static Friction on an Incline Problem

 demonstration
 coefficient

(and 7 more)
Tagged with:

The equation Work due to Friction equals Change in Mechanical Energy can often be confusing for students. This video is a stepbystep introduction in how to use the formula to solve a problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 The problem 1:29 Why we can use this equation in this problem 1:52 Expanding the equation 2:29 Identifying Initial and Final Points and the Horizontal Zero Line 3:00 Substituting into the left hand side of the equation 4:05 Deciding which Mechanical Energies are present 4:59 Where did all that Kinetic Energy go? 5:27 Identifying which variables we know and do not know 5:58 Solving for the Force Normal 6:57 Substituting Force Normal back into the original equation 8:09 Why isn’t our answer negative? Next Video: Work due to Friction equals Change in Mechanical Energy Problem by Billy Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Mechanical Energy with Friction 1¢/minute

Learn how to use Mechanical Energy when the Work done by Friction does not equal zero. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 When is Conservation of Mechanical energy true? 0:37 Work due to Friction equals the Change in Mechanical Energy 1:57 Determining the angle in the work equation 3:01 When the angle is not 180 degrees 3:50 What if the work done by friction is zero? 4:31 Always identify … Next Video: Introductory Work due to Friction equals Change in Mechanical Energy Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: The Energy Song by Bo 1¢/minute

Name: Introductory Work due to Friction equals Change in Mechanical Energy Problem Category: Work, Energy, Power Date Added: 20160212 Submitter: Flipping Physics The equation Work due to Friction equals Change in Mechanical Energy can often be confusing for students. This video is a stepbystep introduction in how to use the formula to solve a problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 The problem 1:29 Why we can use this equation in this problem 1:52 Expanding the equation 2:29 Identifying Initial and Final Points and the Horizontal Zero Line 3:00 Substituting into the left hand side of the equation 4:05 Deciding which Mechanical Energies are present 4:59 Where did all that Kinetic Energy go? 5:27 Identifying which variables we know and do not know 5:58 Solving for the Force Normal 6:57 Substituting Force Normal back into the original equation 8:09 Why isn’t our answer negative? Next Video: Work due to Friction equals Change in Mechanical Energy Problem by Billy Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Mechanical Energy with Friction 1¢/minute Introductory Work due to Friction equals Change in Mechanical Energy Problem

Name: Introduction to Mechanical Energy with Friction Category: Work, Energy, Power Date Added: 20160208 Submitter: Flipping Physics Learn how to use Mechanical Energy when the Work done by Friction does not equal zero. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 When is Conservation of Mechanical energy true? 0:37 Work due to Friction equals the Change in Mechanical Energy 1:57 Determining the angle in the work equation 3:01 When the angle is not 180 degrees 3:50 What if the work done by friction is zero? 4:31 Always identify … Next Video: Introductory Work due to Friction equals Change in Mechanical Energy Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: The Energy Song by Bo 1¢/minute Introduction to Mechanical Energy with Friction

Billy helps you review Conservation of Mechanical Energy, springs, inclines, and uniformly accelerated motion all in one example problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 The problem 0:38 Listing the known values 1:40 Using Conservation of Mechanical Energy 2:56 Canceling out the Mechanical Energies which are not there 4:18 Drawing the Free Body Diagram 4:52 Summing the forces in the perpendicular direction 5:26 Summing the forces in the parallel direction 6:59 Using Uniformly Accelerated Motion 7:56 Finding the maximum height Next Video: Work due to the Force of Gravity on an Incline by Billy Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Conservation of Mechanical Energy Problem using a Trebuchet 1¢/minute

 spring constant
 spring
 (and 9 more)

Name: Conservation of Energy Problem with Friction, an Incline and a Spring by Billy Category: Work, Energy, Power Date Added: 20160114 Submitter: Flipping Physics Billy helps you review Conservation of Mechanical Energy, springs, inclines, and uniformly accelerated motion all in one example problem. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:10 The problem 0:38 Listing the known values 1:40 Using Conservation of Mechanical Energy 2:56 Canceling out the Mechanical Energies which are not there 4:18 Drawing the Free Body Diagram 4:52 Summing the forces in the perpendicular direction 5:26 Summing the forces in the parallel direction 6:59 Using Uniformly Accelerated Motion 7:56 Finding the maximum height Next Video: Work due to the Force of Gravity on an Incline by Billy Multilingual? Please help translate Flipping Physics videos! Previous Video: Introductory Conservation of Mechanical Energy Problem using a Trebuchet 1¢/minute Conservation of Energy Problem with Friction, an Incline and a Spring by Billy

 conservation
 mechanical energy
 (and 9 more)

We use Newton’s Second Law and Uniformly Accelerated Motion to experimentally determine the Static Coefficient of Friction between Tires and Snow. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Reading and translating the problem 1:03 Visualizing the experiment 1:16 Where to begin? 1:45 Drawing the Free Body Diagram 3:09 Summing the forces in the ydirection 4:47 Summing the forest in the xdirection 6:24 Uniformly Accelerated Motion 7:35 Solving for the coefficient of static friction 8:18 All 9 trials Next Video: Breaking the Force of Gravity into its Components on an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Everybody Brought Mass to the Party! 1¢/minute

 second law
 newton

(and 7 more)
Tagged with:

Name: Determining the Static Coefficient of Friction between Tires and Snow Category: Dynamics Date Added: 20151008 Submitter: Flipping Physics We use Newton’s Second Law and Uniformly Accelerated Motion to experimentally determine the Static Coefficient of Friction between Tires and Snow. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:09 Reading and translating the problem 1:03 Visualizing the experiment 1:16 Where to begin? 1:45 Drawing the Free Body Diagram 3:09 Summing the forces in the ydirection 4:47 Summing the forest in the xdirection 6:24 Uniformly Accelerated Motion 7:35 Solving for the coefficient of static friction 8:18 All 9 trials Next Video: Breaking the Force of Gravity into its Components on an Incline Multilingual? Please help translate Flipping Physics videos! Previous Video: Everybody Brought Mass to the Party! 1¢/minute Determining the Static Coefficient of Friction between Tires and Snow

To help understand the force of friction, mr.p pulls on a wooden block using a force sensor. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:17 Drawing the Free Body Diagram 0:43 Summing the forces in the xdirection 1:21 Graph when the block doesn’t move 1:46 Graph with the block moving Next Video: Does the Book Move? An Introductory Friction Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Understanding the Force of Friction Equation 1¢/minute

 introduction
 mu

(and 8 more)
Tagged with:

Name: Does the Book Move? An Introductory Friction Problem Category: Dynamics Date Added: 20150819 Submitter: Flipping Physics Determine if the book moves or not and the acceleration of the book. It’s all about static and kinetic friction. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Reading and translating the problem 0:57 5 Steps to help solve any Free Body Diagram problem 1:26 Drawing the Free Body Diagram 2:24 Sum the forces in the ydirection 3:22 Sum the forces in the xdirection 4:56 The answer to part (a) 6:22 Solving part (b) Multilingual? Please help translate Flipping Physics videos! Previous Video: Experimentally Graphing the Force of Friction 1¢/minute Does the Book Move? An Introductory Friction Problem

Determine if the book moves or not and the acceleration of the book. It’s all about static and kinetic friction. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:08 Reading and translating the problem 0:57 5 Steps to help solve any Free Body Diagram problem 1:26 Drawing the Free Body Diagram 2:24 Sum the forces in the ydirection 3:22 Sum the forces in the xdirection 4:56 The answer to part (a) 6:22 Solving part (b) Multilingual? Please help translate Flipping Physics videos! Previous Video: Experimentally Graphing the Force of Friction 1¢/minute

The Force of Friction Equation is actually three equations is one. Learn why! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The basic Force of Friction Equation 0:20 One Kinetic Friction Equation 0:39 The Two Static Friction Equations 1:40 Example Free Body Diagram 2:16 The direction of the Force of Friction 3:20 Determining the magnitude of the Force of Static Friction 4:09 Understanding the “less than or equal” sign 6:08 If the “less than or equal” sign were not there Next Video: Experimentally Graphing the Force of Friction Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to the Coefficient of Friction 1¢/minute

 mu
 coefficient

(and 6 more)
Tagged with:

Name: Experimentally Graphing the Force of Friction Category: Dynamics Date Added: 20150819 Submitter: Flipping Physics To help understand the force of friction, mr.p pulls on a wooden block using a force sensor. Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:17 Drawing the Free Body Diagram 0:43 Summing the forces in the xdirection 1:21 Graph when the block doesn’t move 1:46 Graph with the block moving Next Video: Does the Book Move? An Introductory Friction Problem Multilingual? Please help translate Flipping Physics videos! Previous Video: Understanding the Force of Friction Equation 1¢/minute Experimentally Graphing the Force of Friction

 graph
 experiment

(and 8 more)
Tagged with:

Please do not confuse the Coefficient of Friction with the Force of Friction. This video will help you not fall into that Pit of Despair! Want Lecture Notes? This is an AP Physics 1 topic. Content Times: 0:00 The equation for the Force of Friction 0:17 Mu, the symbol for the Coefficient of Friction 1:21 Tables of Coefficients of Friction 2:49 Comparing the values of static and kinetic coefficients of friction 3:54 A typical range of values Next Video: Understanding the Force of Friction Equation Multilingual? Please help translate Flipping Physics videos! Previous Video: Introduction to Static and Kinetic Friction by Bobby 1¢/minute
Terms of Use
The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.
Copyright Notice
APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including nonprofit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.