Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 11/14/2010 in Posts

  1. 2 points
    Hello, my name is Max and I'm a senior in high school. Since everyone else is talking about the sports they play...I will too. My mother often asks me to stop playing tennis because it is such a physical sport, but I rarely listen to her so I continue to play at a varsity level. I can't have any pets except a boring fish because my dad is allergic to the fur on cats and dogs. At the moment I work at a restaurant called Hose 22 and I usually prepare food. I'm taking physics because it was recommended to me by my counselor. But I am excited to start physics because it looks like its going to be very different from all the other science classes. I also really want to learn more about the different forces that can act on objects.
  2. 2 points
    If you wanted to, you can change your name and remove your last name in the settings! Enjoy physics!!
  3. 2 points
    Good Evening Folks, I've received quite a few requests over the past couple months, and especially the past couple days, asking if I knew of an "outline version" of the AP Physics 1 learning objectives, essential knowledge, etc., organized by topic. I already had this created from working on the AP Physics 1 Essentials book as a chapter outline/roadmap correlated to the new AP 1 course, but had never bothered to put it in a user-friendly format to share. Well, until yesterday. Here it is: http://aplusphysics.com/educators/AP1Outline.html/ I understand this may not be the order in which you'd teach the topics, but for me at least, this organization is much easier to wade through and make sense of than the current AP Physics 1 and 2 Framework document (in which I get easily lost in the 200+ pages). Perhaps it will be of use to you as well. Please note that you can drill down by clicking on the triangles to the left of the topics, it's quite a big document if you expand it all out. I'm planning on doing this for AP-2 as well, though I probably won't have a chance to start on it until late July. Make it a great day! Dan Fullerton
  4. 2 points
    Thrilled to help, and welcome to the APlusPhtsics Community! The short version... The College Board says you need to know how to derive them. Very rarely have they asked students to do so, but it has happened... This guide sheet may help with studying: http://aplusphysics.com/courses/ap-c/tutorials/APC-Dynamics.pdf Good luck!
  5. 1 point
    That's the richest pauper I've ever heard of...
  6. 1 point
    Looking forward to reading about the launch!
  7. 1 point
    Does anyone know when the AP Physics 2 Videos are going to be completed?
  8. 1 point
    Money should not be spent to furthur study Particle Colliders. The united states economy is terrible and so money should not be wasted on information that we can live about. The information obviously has important benfits. We could feed children in ghana instead of spending money on science that is not needed. The money could go towards helping developing countries to provide water and food and items essential to live. We would unfortunately not have MRI's but kids in foreign countries are more important. The research for particles colliders is just too expensive to be worth it.
  9. 1 point
    When visible light, X rays, gamma rays, or other forms of electromagnetic radiation are shined on certain kinds of matter, electrons are ejected. That phenomenon is known as the photoelectric effect. The photoelectric effect was discovered by German physicist Heinrich Hertz(1857–1894) in 1887. You can imagine the effect as follows: Suppose that a metal plate is attached by two wires to a galvanometer. (A galvanometer is an instrument for measuring the flow of electric current.) If light of the correct color is shined on the metal plate, the galvanometer may register a current. That reading indicates that electrons have been ejected from the metal plate. Those electrons then flow through the external wires and the galvanometer, providing the observed reading. The photoelectric effect is important in history because it caused scientists to think about light and other forms of electromagnetic radiation in a different way. The peculiar thing about the photoelectric effect is the relationship between the intensity of the light shined on a piece of metal and the amount of electric current produced. To scientists, it seemed reasonable that you could make a stronger current flow if you shined a brighter light on the metal. More (or brighter) light should produce more electric current—or so everyone thought. But that isn't the case. For example, shining a very weak red light and a very strong red light on a piece of metal produces the same results. What does make a difference, though, is the color of the light used. One way that scientists express the color of light is by specifying its frequency. The frequency of light and other forms of electromagnetic radiation is the number of times per second that light (or radiation) waves pass a given point. What scientists discovered was that light of some frequencies can produce an electric current, while light of other frequencies cannot. Einstein's explanation. This strange observation was explained in 1905 by German-born American physicist Albert Einstein (1879–1955). Einstein hypothesized that light travels in the form of tiny packets of energy, now called photons. The amount of energy in each photon is equal to the frequency of light (ν) multiplied by a constant known as Planck's constant (â„), or νâ„. Einstein further suggested that electrons can be ejected from a material if they absorb exactly one photon of light, not a half photon, or a third photon, or some other fractional amount. Green light might not be effective in causing the photoelectric effect with some metals, Einstein said, because a photon of green light might not have exactly the right energy to eject an electron. But a photon of red light might have just the right amount of energy. Einstein's explanation of the photoelectric effect was very important because it provided scientists with an alternative method of describing light. For centuries, researchers had thought of light as a form of energy that travels in waves. And that explanation works for many phenomena. But it does not work for phenomena such as the photoelectric effect and certain other properties of light. Today, scientists have two different but complementary ways of describing light. In some cases, they say, it behaves like a wave. But in other cases, it behaves like a stream of particles—a stream of photons. Read more: http://www.aplusphysics.com/courses/honors/modern/duality.html http://www.scienceclarified.com/Oi-Ph/Photoelectric-Effect.html#ixzz3MLV49L00 http://www.physlink.com/Education/AskExperts/ae24.cfm http://www.colorado.edu/physics/2000/quantumzone/photoelectric.html
  10. 1 point
    Article: Breaking News! West Irondequoit physics students have calculated the acceleration due to gravity! In a physics lab students participated in, they used only a stopwatch to find the acceleration due to gravity. They dropped a ball from the ceiling of their classroom and used only the initial velocity, height of ceilings and the time it took for the ball to drop from the ceiling to find the acceleration due to gravity with an equation. When calculating this, they had only 3.98% error from the actual 9.81 m/s2. They got 10.2 m/s2 for the acceleration due to gravity. The students that preformed this lab had a breaking discovery that could change physics forever. By being able to calculate the acceleration due to gravity with only a simple stopwatch, physicists around the world can now do the same. This new strategy makes calculating this acceleration with simple algebra.
  11. 1 point
    Introduction: We decided to see if cars travelling North down Cooper Road outside of Irondequoit High School were speeding. We set up a timing station at twenty meters from the start to measure the speed of passing cars. Procedure: We chose a starting point on a line on the road, so timers could better see when cars started the measurable distance. When a car passed the starting point, timers at the station began their stopwatch. When the car passed the timer, they stopped their watch. Timers recorded the time it took for the car to travel the distance. Calculation: Conclusion: The average speed was 15.7 m/s, just .1m/s over the speed limit. Our conclusion is that cars travelling on Cooper Road do not often speed, perhaps due to the school zone. If we do this experiment again, there are a few things we can improve on. For one, we had some large distances in time span; this can be remedied by perhaps standardizing the timing system – should the timer start/stop when the front of the car passes through each point, the middle of the car, or the end?
  12. 1 point
    Hey Seth, I wish you had my letter to the next years physics student.
  13. 1 point
    Well let's be a follower and blurt out the same information as everyone else... Here we go. My names Corey, I play football and wrestle. I plan on joining the air force and becoming either a pilot or any other cool job I find out about. I am probably the only person taking this class that thoroughly enjoys science. I'm that person who sits at home and watches through the wormhole with Morgan freeman and thinks about the world and how we've come to understand it. I am also taking so bio (why? Because I can...) and I think Mr. Fullerton is super hilarious (true, but hoping he'll read this and I can grab some extra credit or something) and yeah that's a little bit about me. I am taking physics because well I'll say it once again I actually like science a lot. And also I just like knowing more stuff. Knowledge is power (yeah that's a Mr. Tytler quote) and I hope to be able to actually understand the mathematics behind some of the theories that I have heard about that fascinate and boggle my mind.
  14. 1 point
    My name is Kelsey, I am 16 years old and I'm a senior. My parents are divorced but I have equal time with both of them. I grew up in east Irondequoit until my mother remarried in 2008 and I moved to west Irondequoit. My interests outside of school are dancing. I have been dancing for fourteen years and will continue to hopefully become a dance teacher. I also have two jobs that I manage during the school year, which are being a dance assistant teacher and working at Auntie Anne's. In addition, I am taking regents physics and Mr. Fullerton is my teacher. Junior year I didn't think about taking physics until my counselor, Mr. Mcdonald suggested the course to me. He explained that since I did so well in trigonometry and I'm more of a "hands on" learner, that I would enjoy physics more then Chemistry. I also decided to go with this course because I'm interested in learning about energy, movement, mass, matter and everything that has to do with physics and what makes things move. To conclude, I hope to learn all the elements to physics and succeed.
  15. 1 point
    Hi Kelsey, nice to see you also have an interest in the subject and the material hope we all have fun learning with Mr. Fullerton because as we all know "physics is fun"
  16. 1 point
    Hi my name's Kalea (kuh-lay-uh) and I am a senior here at IHS. In my spare time I love to run track and play field hockey. When i'm not in school i'm working, and when i'm not working i'm sleeping. When I'm not sleeping I'm usually buying something online or in person that I really don't need! I am looking forward to my senior year! I took physics because I generally enjoy sciences, and I didn't want to take environmental or AP Bio but I wanted to take a science. Which left this and AP Chem so with the toss of a coin this won! I hope to learn stuff about space and how gravity and other forces affect the human body. I'm hoping to come out the Regents feelings great! video of a skill needed to be successful on the field:
  17. 1 point
    My name is Megan, and I'm seventeen. I have two brothers, and a golden retriever. I go camping a lot by the lake, and I enjoy going kayaking and boating. Also, my job is that I landscape over the summer. The reason I took physics was because I heard that this was a very interesting class to take. I hope to learn more about how things work in the universe in depth. I think that this class will also help me figure out if I want this to be apart of my career. I feel that this class will be a very important part of my senior year.
  18. 1 point
    Seriously hose 22 is great!
  19. 1 point
    just you wait until Mr. Fullerton reads that you think he's "super rad." you'll never hear the end of it.
  20. 1 point
    Hello Rika, can't wait to enjoy physics together this year woooo!!!
  21. 1 point
  22. 1 point
    I was looking for a science class as well. Like you said it was pretty cool to hear about what other people were doing in this class!
  23. 1 point
    I also agree with your second paragraph, but do you remember the nerf wars we had in your backyard in Rogers! Now there's some physics for you.
  24. 1 point
    X-country captain, nice Pete.
  25. 1 point
    Peter this was great. Absolutely stunning. I agree with your second paragraph.
  26. 1 point
    My name is Mark. I stumbled on this site while looking at things for the new AP Physics courses. This is my 34th year of teaching and I will have 3 sections of AP 2 and 3 sections of AP 1. I have taught AP B for many years. I am looking forward to having less content and more time for better understanding.
  27. 1 point
    Hello, I got to this question and was not sure how to go about it. I sorta had an idea but that was for the line charge of a fixed length, so do I just ignore the lengths and assume that E= lamda/(4 pi e0) and then use V=int(E*dl)?
  28. 1 point
    Hi, I was wondering how a Faraday cage works. Why is that that electric fields exist outside conductors and even on the surface of conductors but the field is always perpendicular to the surface of the conductor? Also, in relation to this topic, a conductor with an excess of negative charge is in electrostatic equilibrium. Describe the field inside the conductor. What does it mean for it to be in electrostatic equilibrium. Is it just that the electrons are on the surface of the conductor? if so, wouldn't the inside of the conductor be charged positive because a lot of the negative charge is no the surface. Thank you so much for those who take the time to answer my question!
  29. 1 point
    If you asked me that question as a fourth grader or even seventh grader I would have said a scientist. I was asking for microscopes for Christmas as age nine, and anatomy books at age 11. And I will admit to playing a few video games. Shockingly, I want to be an English major now. However, physics is the best subject known to man. Especially if you are blessed to be in Mr. Fullerton's class. Best teacher ever.
  30. 1 point
    I'll give you some hints... First, you need to find the acceleration of the passenger as the car stops. To do this, first convert the initial speed of the car from km/hr to meters/second (http://www.aplusphysics.com/courses/regents/videos/Metric_System/Metric_System.html). Next, calculate the acceleration of the passenger: http://www.aplusphysics.com/courses/honors/videos/KinEqns_Hon/KinEqns_Hon.html Finally, once you know the passenger's acceleration, you can calculate the force using Newton's 2nd Law: http://www.aplusphysics.com/courses/honors/videos/N2Law_Regents/N2Law.html
  31. 1 point
    I was just looking around on the usual places and I found something that some of your students might be interested in. It is using ultrasonic standing waves to levitate objects.
  32. 1 point
    Baking and soccer are always good interests!
  33. 1 point
    My name is Danielle and I am 17 years old. I am a senior and a captain of the swim team. Outside of school, I spend time working as a lifeguard, teaching swim lessons and skiing in the winter. I wish to pursue a career in economics or photography. I am currently taking regents physics. I am taking it because I wanted to take another year of science because it looks good for college. I decided on physics because I did not want to take biology or chemistry again. I think I will really love Physics this year because Mr. Fullerton seems really nice and fun.
  34. 1 point
    Nice to have you on the team Mir, and I'm happy we have a class together! Hopefully we can help eachother to succeed in this class this year
  35. 1 point
    Omg Miranda!!! i hope you do good with chearleading
  36. 1 point
    I'm ready to take on physics with ya
  37. 1 point
    Time travel was inconceivable for Newton and his studies. But in Einstein's universe it has become a possibility. Science fiction about time travel inspired some of today's scientific ideas on the subject. So dreaming about alternate universes is ok no matter what field you study. Time travel to the future is possible, and it has happened. Like FizziksGuy said, astronauts have aged slightly less than we whose feet have stayed on earth. Now whether time travel to the past is possible, that is still debated, given certain physical conditions. Also, the study of time travel can be used to discover whether the universe could have been created itself. Because of research on time travel, some scientist claim to have a prediction on the span of human existence. Considering how much time we have lived on earth, it is remarkable how much we know about the universe.
  38. 1 point
    For your first attempt at putting a satellite into orbit this is actually quite impressive. As for matters of efficiency, before I could see the pics I seen in your parts log that you were bringing a lot of fuel and you would no question be able to achieve your goal even if you halved your final stage. You did however do a fair job with what you used. Nice use of fuel lines to feed the central tank. You may find in future that if using wings that you don't need a gimble functioning engine or vice versa as either one on their own would allow you to turn easily saving weight, mass and reducing drag if you only used the engine. (Saves buying 4 wings too! ;-D ). Remember to check the isp of the engines too, for your initial booster stage there may be other engines that are highly efficient when within the atmosphere. (I'll let you check which.) Lastly remember terminal velocity. Overthrottling too early can cost you a lot of fuel for not a lot of gain.
  39. 1 point
    I'm sure we will. Most of this team has been taking AP tests for a couple days.
  40. 1 point
    This is a really good trailer. Although I got into ksp before the trailer, It still really inspired me.
  41. 1 point
    Hmm, This looks a lot like one of Scott Manley's tutorial videos. I'll be watching you brazanah Inc.
  42. 1 point
    Hi Everyone, I'm FizziksGuy (aka Dan Fullerton), and I'm thrilled to be able to welcome you to the APlusPhysics site. Please make yourself at home, get acquainted with our other members, and if you have any questions, feel free to ask away! Thanks, and make it a great day!
  43. 1 point
    Hello, hopefully I am posting in the right area. I apologize if not. I am studying the physics iBook "Physics - fundamentals and problem solving" , which is an absolutely amazing book by the way.. i had no idea one could teach through a book with a few videos and get the same results as a full on physics classroom. But anyway, there is a concept I am having trouble grasping. I understand that the force of the gravitational pull is mass times acceleration of gravity but what I'm having trouble with is what we are measuring when we stand on a scale. I was browsing the net and I got onto the Wikipedia site, http://en.wikipedia.org/wiki/Pound_(mass) , where it says that pounds are units of mass in the imperial system we use here in the US. It also goes on to talk about pound-force and pound-mass and that is where It gets me confused. When I step on a scale, is that scale measuring my mass? or my weight here on earth? Pound force would be weight (mass times gravity) and pound mass would just be mass I suspect?it might be a silly question to most, but I've never heard of this. and coincidentally, if one pound is .45359 kilograms, does that mean 1 pound-mass or pound-force equals .45359 kg? When they step on a scale with kilograms, is it measuring their weight or mass? In weight lifting, or on truck scales in kilograms, is that the mass or the weight? Thanks!
  44. 1 point
    Three amazing students at Irondequoit High School have made a break through in the study of physics: By only using a stopwatch, a measuring tape, and a ball, the acceleration due to gravity has been calculated in a new and scientific way. Students measured the height from the floor of the classroom to the top of the ceiling with a measuring tape, and got 2.75 Meters. Holding the ball at the top of the ceiling, the three students dropped the ball and started the stopwatch at the same time. They measured that the time the ball took to hit the bottom of the floor was .64 seconds. Also, the initial velocity of the ball was 0 m/s because any object dropped starts with an initial velocity of 0. Using this information, the students calculated for the acceleration to see if it really is 9.81 m/s2 . The Formula : d= viT+ (1/2)(a)(t^2) was taken to figure it out. with the information they had, the converted formula became: 2(2.75 m)/ (.64s)^2 = A . The answer obtained was 13.4m/s^2. Obviously it is not the real accepted value of 9.81, so they had to calculate percent error also. using the formula: (accepted value - actual value)/(accepted value) X100, the answer came out to be that there was a 36.6% error in their experiments. Faults in the experiment were being able to time the stop watch precisley, and measuring an accurate distance from where the ball was dropped , to the ground. Overall, the students at Irondequoit High School have created astounding breakthroughs in calculating acceleration due to gravity.
  45. 1 point
    So I finally watched the pilot episodes of the new Fox scifi drama "Terra Nova" (it airs Mondays at 8:00 p.m. ET). I found it watchable, with some potential, and like every other TV show in existence (except "Firefly") it had some things I liked and some I didn’t. I got email about it due [...] More...
  46. 1 point
    Here's a problem I encountered sometime in the first few weeks of mechanics last semester. Post an answer if you get one, or ideas if you have them. I can provide hints as necessary (diagrams, possibly useful tools, etc.) maybe starting later in the week. At this point I am considering turning these around on a weekly basis, and so I'll probably post a solution Monday, 12/6. If Mr. Fullerton wants to give extra credit for such things, I imagine one would want to have it done before then for extra points. And show all work! Whether by beautiful here or by mailing be the back of a napkin, documenting your thinking is imperative. Suppose a hockey puck sits atop a spherical, frictionless surface of radius R. The puck is then given a very small nudge, just so that it begins moving slightly (this nudge imparts a negligible amount of momentum onto the puck). Through what vertical distance does the puck descend before leaving the surface?
  47. 1 point
    If you weren't a super duper physics student, it would seem so! However, Forces cause accelerations on an object. and if an object is not accelerating in any direction, two things can be happening to the object. It can either be motionless OR in constant motion; talk to yourself about the definition of constant velocity, thats how I wrapped my brain around that one. Velocity only changes with acceleration (forces), so a constant velocity means no forces or forces that cancel each other out. I hope this helps!
  48. 1 point
    well you know 3 could because if you put 3N and 4N at 90 degrees there resultant would be 5N, so if you put the 5N in the opposite direction of the resultant the object would not move. 2 could work too, because if you set it up so that the 3 2N forces were 120 degrees apart, a peice, you would be able to achieve an equilibrium (draw it!) Now that i think about it, the answer is 1. 1 could not have an obtainable equilibrium. When you put the other ones at funky angles you can always achieve an equilibrium. BUT, for number 1, even if you had the 5N force going one way, and the 1N and 3N force ON TOP of eachother heading in the exact opposite direction, you could not add up to the 5N needed to attain an equilibrium. Adding an angle between the forces only reduces the resultant (there is no sinx or cosx value bigger then 1). So to do this problem, the first step would be to see if 2 of the resultants can add up to be greater then or equal to the other resultant in all cases. For number 1, 1N + 3N < 5N, so it would be impossible to have an equilibrium
  49. 1 point
    I'm hoping this is the right place to post for Physics C Problems. I thought I heard that people were confused by the billiards web assign so I thought I'd weigh in. To me it seems like the velocities of the cue ball and the 8-ball have been switched on the webassign, but maybe I'm crazy. Also, I only know from experience that perfectly spherical billiard balls that collide perfectly tangentially ricochet off each other at complimentary angles, but the mathematical explanation in the answer packet leaves a bit to be explained for me. Any clarification would be much appreciated!
  50. 1 point
    I just did the ruler under the newspaper thing Mr. Fullerton showed us in class for my family and it worked! I was so proud of myself


  • Newsletter

    Want to keep up to date with all our latest news and information?
    Sign Up

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×
×
  • Create New...