Jump to content

Blogs

Our community blogs

  1. Unfortunately we can't dodge the physics regents exam BUT the good news is we can dodge dodgeballs in gym class. So yes, that was really corny intro sentence but, you'll thank me later the next time you go to participate in this scary sport :-)

    Remember the 5 D's:558904_10152725860590114_493561457_n.jpg

    Just kidding, that's from one of my favorite movies: dodgeball.

    But physics believe it or not has everything to do with dodgeball- throwing, catching, running.

    When you throw the ball you are inacting a force, velocity, distance, final velocity and accelaration.

    When catching the ball you are stopping a force through momentum and every force has an equal and opposite force. Your gravity keeps you on the ground and in place when the ball is being thrown at you so that you have the ability to catch it.

    When you are running- you are using kinetic energy and velocity. KE=mv^2.

    Funny how physics is everywhere!

    Good luck on your exams everyone!

  2. One of my dreams in life is to ride a dolphin at somewhere like seaworld or somewhere in Florida. But, how much power does a dolphin have? Power is really easy to calculate. But first you need to calculate the work done by the dolphin using the equation W=Fd. The force would be the weight of the dolphin multiplied by gravity (9.81m/s^2) and the distance would be exactly that, how far the dolphin would be swimming. Once you have calculated that, you can use the in the power equation which is P=W/t. The t being the time it took from the dolphin to get from it's initial point to its end point. This would be how much power the dolphin has alone. What if you wanted to calculate the power the dolphin had with you on it's back? Then you would add your weight plus the dolphins weight and then multiply it by gravity and use the equation for work to find out the work done. And then plug that into the power equation again. And then you would know how much power you and a dolphin would have together.

  3. hannahbananaa00
    Latest Entry

    As of last week, I upgraded from a cracked, partially missing screen on my Iphone 5c to the Iphone 6s.  I was super excited to actually read my screen!! When I was at the store, I was strongly advised (probably from the looks of my old phone) to purchase a glass screen protector.  The salesman said the glass was designed to take all the force if one were to drop their phone. He said the glass was similar to that of what the military uses (for what, I do not know). I am curious what properties of glass alter it's durability.  Or other questions come to mind as well: if any glass is layered on top of the phone, will it protect it just as well? I also wonder how the force protects the actual screen from cracking. I hope the screen does it's job because with my track record, I'll have my phone shattered in a few months. On the plus side, even though the screen costed me $40, there is a lifetime warranty! 

  4. Basketball also has plenty of physics as well. You have plenty of force from when you block someone sends a shot into the stands or dunk on someone. Also their is force from when you dribble the basketball that is how physics is incorporated into basketball.

    • 1
      entry
    • 0
      comments
    • 2495
      views

    Recent Entries

    Since in the summer all I mostly do is ride my bike I thought why not see how physics relates to bike riding. When I ride my bike, I find myself doing no work at all at times and then actually having to do work. After taking physics I finally realized why this is.

    Gravity, is one main factor while riding a bike. When you are to go down a hill, gravity is doing all the work for you pulling the front of your bike down the hill. Gravity will always be greater than the friction, and weight you are fighting through. Friction when going down the hill is very minimal between the spinning tire and the ground. But when you are going up the hill you are doing a lot more work because you are fighting between friction, gravity, and weight.

    Gravity will always be something you have to fight through no matter what your doing because it will always be there.

  5. In physics there is gravitational force all around with all objects. Gxm1xm2/r squared. Gravitational force is thanked by the orbits in outsides. Without it we would be non-existing. It's so cool how the moon and earth go around the sun without any problems and give us the seasons!

  6. http://motherboard.vice.com/read/americas-new-particle-collider-is-one-foot-long

    The Cern particle collider is 17 miles long, the Chinese have announced work on a 49 mile long particle accelerator.

    But, using plasma - a foot long particle accelerator has been invented. it's not perfect, but it will be improved upon.

    Yes, you can now do particle acceleration experiments in the size of a large sandwich.

  7. Forces are everywhere and i never knew how many forces act upon a simple object until this unit in class! A force is a push or pull acting upon an object as a result of its coming into contact with another object. For the purpose of this blog post, i will use a basketball rolling down a hill because that is simple, and hey, its getting late.

    So the forces acting upon this object are the normal force, applied force and gravity force. The normal force is the force of a surface acting back on the object so in this case it is the ground pushing on the basketball to keep it up. Secondly, the applied force is a force from a person or another object so there would be an applied force if i were to go up to this basketball and push it down the hill. Lastly, gravity force is what pulls the object to the center of the earth. This is equal to the weight of the object because it is found by multiplying mass times 9.81 N/Kg.

    There is also friction, which is exerted by the surface when the ball (in this case, basketball) rolls. Air resistance is another force most people don't think to consider, and this force is opposite of which ever direction the ball is rolling. As you can see, there are a lot of different kinds of forces, and i have nobody but mr. fullerton to thank for teaching me all of them!

  8. When a person swings a baseball bat and hit a ball with a wooden bat rather than a aluminum bat, it will generally not travel nearly as far. Why is this? This is a concept of momentum on the baseball field. The biggest reason for the ability for a person to hit a ball further with an aluminum bat is because when they do, they are able to swing the accelerate the bat to higher speeds than if they were to use a wooden bat. Momentum is directly proportional to velocity therefore the faster the swing of the bat the further the ball with travel in most cases.

    • 1
      entry
    • 1
      comment
    • 2350
      views

    Recent Entries

    Physics can be applied to every aspect of swimming. Before even entering the water, swimmers model free fall and angled projectile motion as they dive off the starting blocks. U.S. Masters Swimming states that diving at a 45 degree angle maximizes the speed and distance of the dive. Competition suit brands, such as Speedo and Arena, have to be knowledgeable about the physics of water resistance in order to produce their extremely tight and specially-designed "Fastskins" that are known for helping swimmers achieve best times by strategically compressing their bodies to maximize speed and to minimize water resistance. However, the best examples of physics found in swimming are found when applying Newton's 1st, 2nd, and 3rd laws to the sport.

    Newton's 1st Law states that an object at rest tends to stay at rest and an object in motion tends to stay in motion, at constant velocity and in a straight line, unless acted upon by a net force. It is also known as the Law of Inertia. When swimmers dive into the water, they hold themselves still in a horizontal streamline position for a few moments before starting their kick. Water resistance acts as the net force, which quickly begins to slow swimmers in streamline position. This is when they know to start kicking because, otherwise, the water will end up stopping them. Furthermore, taller and bigger swimmers have greater inertia, so their speed off the block and speed of flip turns are naturally slower. Nevertheless, larger swimmers are often stronger and therefore able to produce enough of a force to dive and turn quickly.

    Moving on, Newton's 2nd Law says that the net force on an objects is equal to its mass times its acceleration. The more force a swimmer can apply, the faster he/she will go. It is common, especially in longer events, to see swimmers start out strong, then slow down and start to look tired, and finally speed up at the end for a strong finish. As swimmers get tired, they begin to produce less force, thereby beginning to decelerate. Towards the end of a race, knowing they are in the home stretch and are going to be able to live to finish the event, swimmers muster enough force to accelerate. During practice, a common set is one involving descending times, which exhausts swimmers, since they have to increase the force they are applying to be able to accelerate.

    Finally, Newton's 3rd Law states that all forces come in pairs that are equal in magnitude and opposite in direction. It is commonly said as "for every action, there is an equal and opposite reaction." This law is the most obvious to observe when watching a swimmer. As the hand and arm push the water backwards, the water pushes forwards with a force that is of equal magnitude. This motion keeps the swimmer afloat and allows him or her to move forward in the water. Every stroke involves the swimmer pulling down and back in order to move up and forward.

    Clearly, physics is exemplified everywhere in the sport of swimming. Physics explains why certain stroke techniques are more effective and why some swimmers are faster than others. Even Michael Phelps' success can be credited to his expertise at applying Newton's first three laws to his sport. After reading this, maybe we will see you in Tokyo 2020 with the other great physicists who call themselves the USA Olympic Swim Team!

  9. As I was desperately researching different topics to write about, I came across an article describing how physical therapy relates to physics. As a former physical therapy patient, I know the painful and difficult tasks required to heal. According to the article, Torque, electromagnetic force, and gravitational force are relevant to physical therapy. Also, physics itself is obviously applicable to the movement of the body through all the forces of nature. Torque applies to physical therapy as the body bends, stretches, and moves throughout a persons life. Electromagnetic force is present within processes of the human body and any electromagnetic forces outside the human body may effect it. Lastly, gravitational force becomes relevant to any motion the body makes.

  10. Guest
    Latest Entry

    Yesterday (June 8th) was my 15 min of fame at IHS for which I demonstarted a model rocket launch for my English class. The class was extremely excited and thought that the idea was great and took a lot away from the experience. The main theme for this launch, however, was wind. The wind was blowing from the SW at about 10 mph, which wreaks havoc for a small model rocket on a short field widthwise. As a result, I launched on the very southern edge of the field and when the parachute deployed, it caught the wind and brought the rocket to almost the same exact spot from where it was launched. The moral of this story? Weather plays a HUGE role in any sort of lfight, and it's extremely important to note varying conditions in order to have a successful launch, whether its a NASA shuttle or a small 14" tall rocket. Below, I've included a photo of the full launch setup. Also below is a brief countdown/ignition sequence from space shuttle Discovery's last and final mission that I shared with the class that day, and that I'm sure others will find it just as interesting.

    Ignition sequence, and countdown (very brief and general. The real countdown is so long it usually takes days to complete once the shuttle is on the launch pad):

    1.

    2. T minus 31 s - the on-board computers take over the launch sequence.

    3. T minus 6.6 s - the shuttle's main engines ignite one at a time (0.12 s apart). The engines build up to more than 90 percent of their maximum thrust.

    4. T minus 3 s - shuttle main engines are in lift-off position.

    5. T minus 0 s -the SRBs are ignited and the shuttle lifts off the pad.

    6. T plus 20 s - the shuttle rolls right (180 degree roll, 78 degree pitch).

    7. T plus 60 s - shuttle engines are at maximum throttle.

    8. T plus 2 min - SRBs separate from the orbiter and fuel tank at an altitude of 28 miles (45 km). Main engines continue firing.

    o Parachutes deploy from the SRBs.

    o SRBs will land in the ocean about 140 miles (225 km) off the coast of Florida.

    o Ships will recover the SRBs and tow them back to Cape Canaveral for processing and re-use.

    9. T plus 7.7 min - main engines throttled down to keep acceleration below 3g's so that the shuttle does not break apart.

    10. T plus 8.5 min - main engines shut down.

    11. T plus 9 min - ET separates from the orbiter. The ET will burn up upon re-entry.

    12. T plus 10.5 min - OMS engines fire to place you in a low orbit.

    13. T plus 45 min - OMS engines fire again to place you in a higher, circular orbit (about 250 miles/400 km).

  11. jazmine2497
    Latest Entry

    Light is invisible until it bounces of something. Light has to go through a medium such as air first, this is known as diffuse reflection. cool fact is visible light is usually defined as having a wave length in a range of 400 to 700 nanometers. also, if you put a straw in a cup with a liquid, refraction occurs. the straw appears bent.

  12. Ryanz18
    Latest Entry

    My dear friend Joe went through a tough time in his life. He once fell in love with a girl on Facebook who was not real. Thoughout this time physics was displayed in many ways. As he found out that this person was not the person he believed was to be, he started to cry. As the tears ran down his face friction slowed them down before they entered the pool that was below from his tears. Friction played a big part as his face turn red. As he got more angry he threw the bear he bought for her. As the bear was airborn, friction slowed it down from the original speed it was released at. As the momentum grew the force behind it hit the wall. Due to the large amounts of force there was a hole in the wall. Causing Joe to get even more angry and cry more. So as you can see physics has been shown in Joes catfish days.

    @Joe_Thompson

  13. Being a girl a generally spend some time getting ready for various events. Getting ready requires many different tools such as curling irons, flat irons, and hair dryers. These tools require a good amount of electricity to power and when you plug more then one of them into the plug the lights dim significantly. This is because the circuits that these are plugged into are only series circuits. This means there is only one path for the current to flow through and when you plug in another tool it requires a lot of extra electricity so the lights dim so enough energy can be pulled for the blow dryer. This way you the circuit wont blow out and a fire wont start even thought it is a possible.

  14. ThatGuy
    Latest Entry

    This morning in the lab we had a little physics throwback.

    Stop. uh. Back-it-up. AP_B/Chem

    remember those spectormeters we used? the cardboard things that broke up the light into colors? Well i got to use a real one today to find the wavelength of a laser. Basically you shine whiteish light in one hole so you can see the scale in the back, and the laser in another portal. You look through the lens, and spin the dial until you see a thin line the color of your laser, you line it up with the meter, and look at the dial with your wavelength. It was pretty **** cool.

    Now we also have a computerized one that does it too but it wasnt workin.

    fiskis with phullerton

    • 1
      entry
    • 3
      comments
    • 2273
      views

    Recent Entries

    blog-0916959001395005083.jpgOn March 1, 2014, user Ben Shelton discussed how physics is used in the James Bond movie Skyfall. Since I have seen this movie and other action movies like it, I found it interesting how heroes such as James Bond defy the laws of physics. Ben Shelton broke down the first scene of Skyfall using the equation vf2 = vi2 + 2ad to prove the inaccuracy of a character's fall. It makes me wonder how physics could be used to analyze other action movies.

    Here is the link to the original post (warning: it contains spoilers):

  15. If you have ever gone laser-tagging, then you will know that the space in which you are in has many mirrors. Why? well light can reflected off of surfaces that are flat and smooth very well. This is an example of specular reflection. However not everything reflects even if a large amount of light is concentrated upon it. Why? well it is simply that some surfaces are too rough to reflect light and so you cannot use everything around you to get your opponents.

  16. About me

    • 1
      entry
    • 2
      comments
    • 2229
      views

    Recent Entries

    baseball00
    Latest Entry

    I am a student at IHS. As I dive into my senior year I hope to discover new opportunities and interests. I play baseball in the spring and summer. During my free time I like to watch sports or read; however, one of my greatest interests has always been science. I am taking AP physics C this year to further my understanding of the universe. I always knew I liked science, but taking AP physics 1 last year helped me find out that I have a specific passion for physics. In the future I would like to continue my interest in physics by taking it in college and having a career in the engineering field. This year in physics I would like to become more skillful in becoming self taught. This will give me opportunities to become a more innovative person. This year I am most excited about the independence that comes with being a senior. I am anxious for my college research process to come to an end so I can finally apply to the schools and decide where I want to go.

  17. haley13
    Latest Entry

    football connects to physics in several ways. Physics is demonstrated when the football is being thrown, the speed the ball is going, and the distance the ball is being thrown. People watch football on the weekends and focus on how many yards gained, who wins the game, but don't realize how much physics is involved if you really think about it.

    • 1
      entry
    • 1
      comment
    • 2201
      views

    Recent Entries

    Some bad language, but definitely funny...

    • 1
      entry
    • 0
      comments
    • 2165
      views

    Recent Entries

    Sports are a huge part of most peoples daily lives. When I was younger softball was always something I wanted to do but I chose other activities over it. I decided to take a minute and learn how softball relates to physics since it's one topic I am interested in.

    Pitching in softball is related to physics because of the velocity. Pitching can be very difficult because you need to know all the different curve techniques. In softball, there are six main pitches, the fastball, change-up, curve, screw, rise, and drop. The fastball is supposed to stay on a straight path at a constant height to the ground. This would mean that the softball would need to go at a constant velocity as well. The change-up which is a slower pitch that occasionally drops right at home plate, would need to have a velocity the decreases rapidly. The curve, screw, rise, and drop are moving pitches, meaning they will bend in a different direction. The curve and screw bend in different directions which would mean that velocity would change with direction. The rise and drop would bend up and down, so their velocities would change for the same reasons as the curve and screw. Velocity is one main component of physics that effects softball.

    With doing research on this topic I learned more about the sport as well as how physics is involved with every step of this sport.

  18. There's tons of physics in volleyball. But the most recent physics I've noticed is that after really long plays the ball is actually warm. This shows transfer of energy. The energy from the players is transferred to the ball which after a while can make the ball warm.

  19. Launch Time: 10:37 am

    Team Members Present: Jason Stack, Marcus Nicholas and Michael Kennedy were all present for this launch.

    Play-by-Play: Initially the rocket was created using the parts listed in the pre-flight briefing. The rocket was launched from Kerbin and angled in order to successfully travel outside of Kerbin's atmosphere. The rocket was then directed into orbit around Kerbin. Kerbin was orbited a few times. The rocket was then returned back to Kerbin by using a maneuver that brought the rocket back into Kerbin's atmosphere. The bottom engines were released, then the second engines, leaving only the pod left. The pod descended to 1,000 meters above Kerbin and then the parachute was deployed. The pod landed safely on Kerbin. 
     

    Photographs: dsd.pngdsds.pngscreenshot0.pngscreenshot11.pngscreenshot12.pngscreenshot2.pngscreenshot3.pngscreenshot4.pngscreenshot5.pngscreenshot6.pngscreenshot8.pngscreenshot9.png

    Time-of-Flight: 4 hours and 5 minutes

    Summary: Our flight was a great success. We planned to accomplish all initial milestones, including a successful manned orbit and a successful Kerbal EVA. All of these desired milestones were accomplished. Our spaceship and Kerbal manning the ship returned safely to Kerbin after successfully reaching orbit around Kerbin. By reaching a manned orbit around Kerbin, all the initial milestones were accomplished by this launch. 

    Opportunities / Learnings: Establishing what the launch goals are and designing the rocket accordingly is very important. Failure to do so will result in an inability to accomplish any milestones.

    Strategies / Project Timeline: After this accomplishment, our next goal is to reach orbit around the moon and land on the moon. 

    Milestone Awards Presented: 

    • Launch to 10 km - $10,000
    • Manned launch to 10 km - $20,000
    • Manned launch to 50 km - $30,000
    • Achieving stable orbit - $40,000
    • Achieving stable manned orbit - $50,000
    • First Kerbal EVA - $60,000

    Available Funds: $257,818

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...