Jump to content

Blogs

Our community blogs

  1. blog-0868459001397216848.pngIn the recent installments in the captain America movies, we see the captain using his shield to knock out the Nazi's during Wii but how doesn't it kill them. as we have seen in the movies when he throws his shield hard, newton's third law states that the amount of force is equal to the thing it transfers its energy to. so as the captain throws hard, the shield should have enough force to decapitate the enemy. also when Peggy shoots cap's shield, it makes a large vibrating sound. this is because the lognioitutional waves in the combustion form a mechanical wave, which is moving left and right in terms of the wave pattern. thank you for listening in the physics in captain America
  2. the Doppler effect is when the frequency of a sound wave becomes higher the closer you get to it and then the pitch lowers as it passes you again. when an ambulance is speeding down the street with its sirens on the pitch of the siren changes as it passes you. when it is coming towards you its pitch and frequency start to increase and then reach a maximum as the ambulance is right next to you. then as it drives passed you again the pitch and frequency of the siren lowers the farther and farther away it gets from you. the Doppler effect is the difference in frequency and pitch the siren makes as it passes you.

    • 1
      entry
    • 1
      comment
    • 1203
      views

    Recent Entries

    SabrinaJV
    Latest Entry

    Two favorite games of mine, Assassin's Creed and Batman: Arkham City, are all about physics, whether readers are giving me displacements that run me into walls instead of leading me through my maps or I'm diving to the ground then pulling back up in order tocatch wind, distance, and acceleration. I have to find a way to shoot a poison dart at an angle where I won't be noticed, position myself just right to take criminals down in a sneak attack. Batman especially takes the cake when a sniper is after me and I need to "displace" his position to take him out.

  3. Basically when doing anything in life physics is involved. When driving physics is involved. Driving is all about getting from one place to another in the quickest amount of time because time is a precious thing and noone wants to waste it. When going from one place to another and then back to the same place from where you started is called displacement. When driving there is a certain speed that you are allowed to go. To get up to the speed that you want you must make you vehicle accelerate to the speed that you want. The velocity is how fast that your car is going. If you are stopped at a red light or a stop light your car won't go anywhere because according to Newtons first law an object at rest tends to stay at rest unless acted upon another force which could be you moving your foot from the break pedal to the gas pedal.

  4. A video combining the amazing lectures, clips and television shows of some of the most famous celebrities and scientists on the planet. Combine it with music and you get the best thing ever.

    http://vimeo.com/29466108

  5. Mixtapes have physics behind them but you have to look at in a different perspective. Mixtapes have wave interference which is two or more waves in the same medium at the same time and same location. Mixtapes use sound waves and a lot of times artists who make mixtapes choose two waves that start at the same time to start their song. A new sound wave might interfere but they both continue as if they have never met and that represent constructive interference. If there is a destructive interference there will be a smaller amplitude which means it will be a softer sound for the mixtape.

  6. As for many instruments resonance, or the vibrating due to an equal frequency, causes the sound. For an opera singer to break a glass with just his/her voice they would have to match the frequency or pitch that they sing at to that of the glass. When the opera singer hears the frequency of the glass, being trained they can match it to the sound that comes out of their mouth. This causes the glass to vibrate and eventually shatter once the pitch is perfectly met. For a guitar, the strings are what causes the music. When you put your finger on a string and shorten the wave length, the frequency then increases and you get a higher pitch out of that cord. This is true with most instruments such as trumpets, trombones and pianos because as you slide or press, you shorten or lengthen the wave length and in turn are changing the frequency...without physics, music wouldn't be possible!

  7. ever play with a slinky by pushing it down the stairs? well that's not all you can do with slinkys you can learn about waves with them. if two people hold each end of the slinky then move the slinky up and down then you can see a transverse wave that is a mechanical wave to because it have a medium (the metal). You can create all types of frequency's and amplitudes by either moving your hand up and down faster or slower. another wave you can see is a longitudinal wave by pulling the slinky together then letting go. you will see that the wave moves in the same way the velocity does. it doesn't move up and down it moves side to side. so next time you play with a slinky try to create some waves because you will be able to learn something's while having fun!

  8. To start your swinging motion, you must push off the ground to create some type of energy you wish to increase. As you swing backwards to get a starting swing from gravity, your potential energy will increase as your body moves forward. Going backwards, your potential energy decreases and increases in kinetic energy. Whether you're increasing or decreasing in kinetic or potential energy, the increase or decrease is the same amount of either energy. So for example, the amount of kinetic energy you lose is the amount of potential energy you will obtain.

  9. Football seems pretty stupid to me. Athletes line up across from eachother, then run at eachother as fast as they can. However, football is my favorite sport to watch. There is alot of large forces coliding in football. Every colision can be related back to physics. The force of anything is determind by its mass and acceleration. The larger the mass of an athlete and the more acceleration an athelete has the larger the force the athlete can produce. NFL players can produce large forces on eachother. This leads to big hits and head injuries.

  10. A popular sport in the world is golf especially now that the masters are on television. This is the start of a very exciting time for many people to be watching such a long storied sport. The physics in golf are plentiful. There are many kinetic equations that are involved in hitting a golf ball. There is not an initial velocity on the ball but when you swing and hit it there is a ton of displacement and a large final velocity. This is also something that deals with friction when the ball hits the grass it causes the ball to slow down and roll to a stop. This is something that is very evident in putting as the ball is always on the grass causing it to slow as it goes into the hole. This is how golf is full of physics.

  11. while bored many of us tend to listen to music, but we often don't realize how lucky we are not to have to deal with electromagnetic interference because of the newly incorporated technology such as wi-fi and error correcting systems. going back to older radios such as the analogue, many of these would have problems receiving the correct signal as there were a lot and they could not distinguish the in-band unwanted from the intended; thus, many times radio stations were disrupted or hard to dial in on.

  12. In physics there is gravitational force all around with all objects. Gxm1xm2/r squared. Gravitational force is thanked by the orbits in outsides. Without it we would be non-existing. It's so cool how the moon and earth go around the sun without any problems and give us the seasons!

    • 1
      entry
    • 1
      comment
    • 1917
      views

    Recent Entries

    Shooting the ball in lacrosse requires physics. When the ball is shot, it initially starts at rest and increases in velocity very quickly. When i shoot the ball it goes so fast that no one can see it and i always score. Because of the force behind the ball, it breaks the lacrosse net usually. sometimes after going through the net it hits a person. The speed of the ball is so high that it knocks most people over. The net does create some resitance along with the air so no one usually dies. They only break a bone or two.

  13. Slinky's can perfectly represent the concepts of basic waves. First, if one person yanks the slinky to the left then quickly back once, a pulse is created. If they do this repeatedly, a wave is created. By making bigger waves, the amplitude will increase and by making faster waves, the frequency increases. If the person at the other end of the slinky decided to create waves as well, interference occurs where the two waves meet. If the waves are produced on the same side of the slinky, constructive interference will occur, creating a bigger amplitude where they meet. But if the waves are produced on opposite sides of the slinky, destructive interference occurs where displacements negate each other. By performing different experiments on slinky's, we can observe how waves work by manipulating their characteristics, observing physics in real life.

  14. The shift in a wave's observed frequency is due to the relative motion between the source of the wave and an observer. As a car beeps its horn while traveling, it has a constant frequency and as the velocity increases, the sound waves from the observer have lower amplitudes and are less frequent. This is known as the Doppler effect. As sound waves come toward the observer they have higher frequencies than the sound waves moving away from the observer. Not only does frequency help explain the Doppler effect but it also explains how the police are able to find the speed of cars on a highway. A radar gun can be used to determine the speed of a car by measuring the different frequencies between emitted and reflected radar waves!

  15. Last time I talked about Netwon's 3rd Law, and how it is similar to offense in basektball. I said that "Newton believed that every action had an equal and opposite reaction, meaning that all forces come in pairs. If object 1 exerts a force on object 2, then object 2 must exert a force back on object 1 which is equal in magnitude and opposite in direction." To be good at defense in Basketball, it would be great to follow a similar concept. On defense your goal when matched up to a player on 1 on 1 defense your goal is to shut down 1 player and make sure they can not make an impact on the game. You want your defensive assignment to score as little as possible or better, not at all. Follow your player like a shadow. whatever he does, you follow that, so if he drives to the basket left, backpedal, and try to stay in front of him. direct him with your defense. If your playing a little bit off of him, stand between him and the ball, this is called being in hte gap, if you play it correctly, you should always be aware of the ball and the man. You are vulnerable to a back cut, if you dont watch your man carefully. If you correctly know where the ball and your man is, you are always in a good position to steal the ball off a pass. The 3rd Law idea also helps hear, as you have to shadow the offensive player your gaurding, mirror his movemnts so you can always stay in the gap, and you can always be in the position to steal the ball. Your goal should be to never let your assignment even touch the ball. No scorer can score without the ball, and that is something to remeber. >>>>>>>>>>>>>>>>>>>>>

    <<<<<<<<<<<<<<<<<<<<< In this clip, Kobe cuts, and recieves the ball for an easy two points, the defender didn't have a good enough position to either stop Kobe, or steal the ball, and this is exactly what you do not want to happen as a defensive player.

  16. Reflection is the change in direction of a wave front at an interface between two different mediums so that the wave front returns into the medium in which it originated. Common examples of this include the reflection of light, sound and water waves. In acoustics, reflection causes echoes. This is why when you go to a school concert, there are those white barriers behind the performers. They are there to reflect the sound from coming from the instruments to the crowd. Acoustics also play an important role in understanding how waves behave because the angle in which the waves hit the acoustics walls, the angle remains the same as it bounces off the acoustics barrier.

  17. jackbowes10
    Latest Entry

    Car collisions happen everyday all over the world just like how physics is used every single day all over the world. Physics has a big part in accidents involving vehicles due to the force, momentum, acceleration and collision that occurs. The force which cars are brought upon each other depends on how great the acceleration is of the moving vehicle. The faster the car is moving, the greater the force will be as it hits the other car. The amount of force that accidents are caused by are largely dependent on Newton's laws. Objects in motion will stay in motion, therefore when a car is moving towards the other and crashes into it, it's because while the vehicle is moving at a high speed it's hard to come to a complete stop before the collision into the other.

    • 2
      entries
    • 1
      comment
    • 1418
      views

    Recent Entries

    mt8397
    Latest Entry

    I'll be honest: I'm not a prima ballerina. I'm terrible at balancing while en pointe. (For those of you who aren't familiar with ballet, "en pointe" means when I'm standing on the tips of my toes while in pointe shoes.) My teacher always tells me, "Put all your weight on your big toe!" And here's why:

    To stay balanced en pointe, a dancer's center of gravity must be directly above the contact point with the floor. This is called static balance. The net force is zero while torque is also zero. The net force is zero when the force of gravity equals the force of the dancer pushing off the floor. (It gets painful after an hour, trust me.) The net torque is zero when the net force points through the dancer's center of gravity.

    After months of pointe training. I've mastered balancing while standing still. However, I have yet to master balancing while turning. The key to good turning is making sure your rotational axis doesn't wobble. Even if you're spotting, a rotational axis is hard to see. (You can't see it!!) We've learned that in order to stand en pointe, a dancer must maintain static balance. Unfortunately, it's impossible to turn while maintaining static balance. While turning, a dancer must shift her/his center of gravity constantly, which is maintaining dynamic balance. The contact with the floor always stays focused, but the center of gravity must move in a circular pattern, much like a cone shape.

    Wish me luck on mastering my turns!!

  18. Driving involves a plethora of physics knowledge if you want to be not a good driver, but a great one. There are a lot of ways to be able to calculate the time it takes for a car going X miles per hour for X meters to stop. V=D/T is one equation that you could use to solve a problem like this, and knowing how to do this helps you know when to start to break or when to at least slow down. You'll never know how many meters your going but having knowledge like this always helps. This is all very important because being able to have knowledge of this is better than just guessing.

    • 14
      entries
    • 0
      comments
    • 3529
      views

    Recent Entries

    emvan2
    Latest Entry

    Like a sound wave, the waves produced by drums are longitudinal. The vibration produced when a drum is hit creates pressure waves in the air. These pressure waves describe the sound. The more the drum head bends, the volume of sound increases, a higher frequency is created and the amplitude if affected. Pitches of drums range from low frequency basses to high frequency pitches. Like a speaker which amplifies sound through the air, noise from the drums travel to our ears because of the sound vibrations and type of waves. When the vibrating drum vibrates the air molecules around it, it does so at the same frequency to produce a beautiful sound.

  19. FaithDemo06
    Latest Entry

    Ah yes, my favorite type of waves. Wi-Fi. Its a beautiful thing, these modulated electromagnetic waves allow you to stream movies and gain access to the internet with out being plugged in. Once only a coffee shop novelty, it can now be found in every house across the country. But how does it work? Wi-Fi can cover as much as an entire school, or building, depending on the frequency of course. Wi-Fi is a type of wave that can penetrate walls and ceilings, as well as cross rivers and high traffic areas. The Wi-Fi signal is composed of large numbers of different frequencies in order to reject noise in any of them. Also certain materials can make it harder for wi-fi to travel, and also other waves (this is the reason for channel settings) can interfere with Wi-fi too.

  20. marisam96
    Latest Entry
    blog-0357398001390792288.jpgThis blog post is going to be slightly different than other posts. Most have to do with activities that people do but for this blog post, I wanted to connect physics not with an activity that I, or someone I know, do but with a class I take. More likely than I would like to admit, taking physics has allowed me to better understand my AP calc class. We frequently do problems that have to do with finding the speed/velocity of an object, then the acceleration, or the derivative of the speed/velocity, However, occasionally in calculus, we are giving the problem, but not an equation to plug the problem into. Thanks to physics, I have been able to know how to tackle a calc problem because of what I have learned in physics. I know that a=v/t and v=d/t and typically, enough of those values are given to me so that I can finish the problem. Also, we have learned about Newton's method in calc, which was just crazy weird because as we were discuss Newton's laws in physics, the same guy's method popped up the class right before. So while most people can find the physics in their sport of choosing, I can say that I have seen physics reappear in my Calculus homework.
  21. Recently we learned about resonance, which by definition is "the tendency of a system to oscillate with greater amplitude at some frequencies than at others." This is one of the many examples of physics found within the guitar. Tuning a guitar is an example of resonance. The string's vibrations create sound waves with different frequencies. Also, when you plug in your electric guitar to the amp, you are actually making use of a physics skill! You are making a speaker. The amplifier projects the sound waves which leads to louder sound. However, these sound waves might sound a little muffled to your mom who has on earplugs. You can change the bass and the treble which alter the way your eardrums detect the sound waves. As opposed to acoustic guitars, electric guitars are electrical, so they require circuits, current, and an electrical source.

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...