Our community blogs

  1. Launch Time: 10:37 am

    Team Members Present: Jason Stack, Marcus Nicholas and Michael Kennedy were all present for this launch.

    Play-by-Play: Initially the rocket was created using the parts listed in the pre-flight briefing. The rocket was launched from Kerbin and angled in order to successfully travel outside of Kerbin's atmosphere. The rocket was then directed into orbit around Kerbin. Kerbin was orbited a few times. The rocket was then returned back to Kerbin by using a maneuver that brought the rocket back into Kerbin's atmosphere. The bottom engines were released, then the second engines, leaving only the pod left. The pod descended to 1,000 meters above Kerbin and then the parachute was deployed. The pod landed safely on Kerbin. 

    Photographs: dsd.pngdsds.pngscreenshot0.pngscreenshot11.pngscreenshot12.pngscreenshot2.pngscreenshot3.pngscreenshot4.pngscreenshot5.pngscreenshot6.pngscreenshot8.pngscreenshot9.png

    Time-of-Flight: 4 hours and 5 minutes

    Summary: Our flight was a great success. We planned to accomplish all initial milestones, including a successful manned orbit and a successful Kerbal EVA. All of these desired milestones were accomplished. Our spaceship and Kerbal manning the ship returned safely to Kerbin after successfully reaching orbit around Kerbin. By reaching a manned orbit around Kerbin, all the initial milestones were accomplished by this launch. 

    Opportunities / Learnings: Establishing what the launch goals are and designing the rocket accordingly is very important. Failure to do so will result in an inability to accomplish any milestones.

    Strategies / Project Timeline: After this accomplishment, our next goal is to reach orbit around the moon and land on the moon. 

    Milestone Awards Presented: 

    • Launch to 10 km - $10,000
    • Manned launch to 10 km - $20,000
    • Manned launch to 50 km - $30,000
    • Achieving stable orbit - $40,000
    • Achieving stable manned orbit - $50,000
    • First Kerbal EVA - $60,000

    Available Funds: $257,818

    • 31
    • 20
    • 315

    Recent Entries

    Latest Entry

    This week I focused on chapter 5 in Mechanics.   This included momentum and impulse, conservation of linear momentum and center of mass.

    Areas that went well for me were momentum and impulse and conservation of linear momentum.  What helped me to really understand these two topics were first understand the graphs that went along with them.  This included Force vs. Time graphs showing the impulse to be the area under it.  These graphs gave me a better understanding of what I was solving for when I got to problems.

    Center of mass was the topic I had the most difficulty with.  However plotting the points on a graph helped me with this as well.  The equation Xcm= (m1x1+m2x2).../m1+m2... really helped me understand finding the center of mass of different points.  Finding it for other objects such as rods however was still quite challenging.

    My major key to success this week was working more with graphs.  Once I understood graphs whether it be just plotting point or graphs such as Force vs. Time, they all helped me get a better understanding of the topic I was working on.   

  2. When a person swings a baseball bat and hit a ball with a wooden bat rather than a aluminum bat, it will generally not travel nearly as far. Why is this? This is a concept of momentum on the baseball field. The biggest reason for the ability for a person to hit a ball further with an aluminum bat is because when they do, they are able to swing the accelerate the bat to higher speeds than if they were to use a wooden bat. Momentum is directly proportional to velocity therefore the faster the swing of the bat the further the ball with travel in most cases.

  3. NisaVyv
    Latest Entry

    Not many people put a whole lot of thought into what their morning cereal is made of. Most people would just assume there's some grain and maybe a little sugar, or a lot of sugar if you're more of a Lucky Charms person than a Raisin Bran person. Nobody would suspect, though, that there would be metal in their Cheerios. Turns out, Cheerios are magnetic. Or are they?

    Fill a bowl with water and drop in a couple Cheerios. Take a magnet and hold it just above the Cheerios, the Cheerio will be attracted toward the direction of the magnet. Why is this? If the little cereal ring is magnetic, then there must be metal fragments in it causing the attraction. Now the cereal is all magnetic, and it does contain tiny fragment of iron. This is perfectly reasonable though, as iron is a key nutrient in a human diet. But that's not the whole story, 

    If you were to try this with objects other than cereal, say a small piece of paper or plastic, it would still seem to be attracted to the magnet as it floated in the water. The "attraction" you see is actually all about water, which is diamagnetic, meaning it generates a magnetic field opposite to that of the magnetic field it is in the presence of. Thus, the water is slightly repelled by the magnet. This causes a slight divot in the water, that the object in the bowl actually falls into, making it appear to follow the magnet. In actuality, it isn't being affected directly by the magnetic field, but by the waters reaction to the magnetic field.

  4. In the last decade, the uprise of mobile devices with touchscreens has been prominent, and there are 2 main types of touchscreens. The first, and cheaper style, is known as resistive, which uses 2 separated films that when come in contact they allow current to flow. This is what is used to determine the location of the touch, as wherever the current is flowing is where the user is currently touching. The issue with this system is that it requires physical movement of the plates, meaning it can be triggered by anything pushing it together, also if it's layers are no longer even they can touch if nothing is pushing on them, causing unwanted actions. The solution to these issues is the more complicated design, known as capacitive touch. This uses a system of 4 capacitors on each corner, and when the touch occurs, based on how the capacitance changes, the computer system can determine the position of the touch. This is exceptionally useful for avoiding accidental touches, and for creating a much more durable touch surface. Also, it enables much more precision and ease of use to the user, as they don't have to physically move anything, and so there is less to go wrong. The disadvantage of this is that water and anything else conductive greatly reduces the accuracy and usability of such a touch screen, as it messes with the currents. Thanks to this kind of technology, it is much easier for us to use our mobile devices with ease and precision.

  5. If a tree falls in the forest, and no one is around to hear it, does it make a sound?

    When a ball hits the ground or an axe hits a tree, we can hear a noise signaling this collision. Obviously, sound waves are produced, but where exactly do they come from? 

    When two objects collide, one of two things can happen: an elastic or inelastic collision. In the case of elastic, no kinetic energy is lost. Inelastic, however, involves a loss of kinetic energy. Where does it go?

    Part of it goes to heat, but another part of it causes the sound waves to be produced because they need energy. When two objects collide, the molecules of the object vibrate a little, which in turn vibrates the air molecules, creating a longitudinal wave. 

    So, if a tree falls, it does make a sound because the laws of physics don't stop just because there isn't a human to watch it. 

  6. Well its been real Physics C.  Here I am, sitting here, writing my last blog post of high school (and maybe forever).  This class has been a huge undertaking, but also something that I am glad I attempted.  Although the work has been hard and I am far from even coming close to mastering some of these complex concepts, my time with Physics has been amazing and enlightening.  It has opened me up to a totally new way of seeing things, and I cant wait until I can put what I've learned into use while I study to become an Architect.  Without a doubt I will be taking Physics in College, but anything past mechanics I can just leave to the engineers (hey Skylor and Justin ;))  With that said, I know the knowledge I have gained in all aspects of Physics will forever help me through all professional (and maybe some personal) challenges.

     I just hope and pray that whatever physics god may be out there will here these last few simple requests:

    1.  May the downward force of all of my dorm supplies be much less than the maximum possible opposing force of that ratty box I dug out of my garage.

    2.  Also, when all that crap does come falling out of the bottom of the box,  please make sure I'm not halfway up the stairs in front of a group of upperclassmen.

    3. And if both of those things do end up happening, please oh please make sure the friction provided by that shirt that got under my feet from the box is enough to keep my feet static on the step.

    4. And lastly, please keep any torque on my UCL below 70 ft-lbs - that would be great.

    But for real, I am so excited to see what the rest of this year of physics has in store for me and for the adventures that are bound to follow.

  7. Hot air balloons are very fascinating mechanisms in that they allow humans to fly without physically flying. Hot air balloons consists of a basket used to carry people, an envelope (the top piece), and a burner which consists of several megawatts is also present. When heat is released from the burner, it creates buoyancy. This is because the hot air is less dense than the cooler air that surrounds it. This is known as Archimedes' principle, which states that any object regardless of its shape that is suspended in a fluid, is acted upon by an upward buoyant force equal to the weight of the fluid displaced by the object.

  8. This year has been amazing for me. I never thought that I would be able to do things such as a drag force derivation, or transient analysis of circuits, but I proved myself wrong. Through hard work and a lot of time, I matured through this year into an independent student who has faith in his own intellectual abilities which can all be attributed to the workload of AP Physics C. I learned that it isn't bad to ask questions as long as you have tried your hardest and thought about it until you cannot anymore. I have also learned to attack problems with other people, and combine knowledge in order to come to a solution which is extremely satisfying in the end. I now feel much more prepared for college and the challenges that I will face there. I have learned that it is OK to fail as long as you have put your best effort forward, because it only means you have room for improvement. Physics C has brought me many emotions both happy and sad, and has pushed my thinking to places It has never been before. I will undoubtedly miss Physics C, but will look back on it as a stepping stone in my path towards higher learning and eventually a career.

  9. So we are coming to a close of the third quarter in AP physics, and therefore it is time for me to write one last blog about how this quarter went in class.

    We continued with the E and M course, and moved rather quickly as the AP exam would be right after the end of the quarter. Electric Potential came directly after statics, and I found this quite interesting, paticulary derivations concerning Gausses Law. Furthermore, we moved on to circuits and personally this was probably my favorite unit of the course. I really enjoyed learning about RC Circuits and how capacitors and resistors interact in a circuit; we did a lab using a bread board and Logger Pro software and this was very interesting in seeing how a capacitor discharges. 

    Lastly, we got into magnetism, and inductance. The main thing I got out of magnetism in this course is the chicken and egg paradox with electricity and magnetism. They are one in the same as a moving electric field creates a magnetic field, and a magnetic field can induce a current. It's all about moving charges! Furthermore, I enhanced my understanding with the Bio Savart Law and the more simpler Ampers Law. 

    All in all, this course has been my favorite out of my high school career, and I am ready to kill it on his AP exam in may. I would also like to thank Mr. Fullerton for the extension on the blog assignment. 

  10. This Thursday, the Irondequoit High School Philharmonic Orchestra and Choirs will be performing their major works concert at the St. Mary's Church, right next to the Geva theater. It's quite the interesting concert to perform, in that we're all playing in an unfamiliar venue, and have had only a single day where we ALL got together to practice. Oh, and it doesn't help that the acoustics in the church are terrible, arguably only a little better than the IHS gymnasium.

    Why are they terrible, you ask? Let me tell you. In a real theater or concert hall, the entire venue is designed with the acoustics in mind. For simplicity's sake, imagine sound waves as transverse instead of longitudinal. As Physics 1 taught us, if there's more than one source of sound, the sound will be amplified where peak meets peak and trough meets trough, and nullified where trough meets peak. Because the architects who designed the building know, in general, where the performers will be, they'll have a good idea of where the sound will be loudest (likes meet), and quietest (opposites meet), and will thus place the aisles at quiet points and the seats in louder areas, to maximize the enjoy-ability of the performance. Churches, however, (like St. Mary's) are not designed with acoustics in mind. Churches are designed for masses in which they generally have only a single person speaking, meaning that even if sound reflects off the walls, there's generally going to be a pretty similar listening experience everywhere. As such, the seats are organized in straight rows which are evenly spaced, meaning that when the orchestra starts playing, there's going to be some odd spots in which the sound dwindles more. Add to that the cramped feel of squeezing an ~20 person orchestra and ~50 person choir onto and in front of an altar, and it makes for a really interesting performance.

  11. Crossbows are a very a cool weapon. They use tension and potential energy to shoot arrows. You first pull the string back, which requires a large amount of force, lock it in place with the spring system and then pull the trigger which drops the lock and sends the string and arrow launching forward at a high velocity. When the string is pulled back and locked in place, potential energy is built up. The more potential energy that is built up, the faster and stronger the arrow will launch once the trigger is pulled. Crossbows are fairly simple, yet very deadly. 

  12. OcktoByte
    Latest Entry

    This post will delve less into video games and more into science fiction. Holograms are often shown in sci-fi movies and tv to show futuristic technology. Holograms are usually depicted as images created purely by light. Currently, we have digital projectors, able to display a color image on a flat surface. However, most holograms in pop culture have a 3d image. This would be difficult to accomplish realistically, since in order to create a 3 dimensional image, the light would need something to refract off of. The same way that a laser pointer will show a line through smoke or fog, but only shows a dot through the air. Creating a 3d hologram would require that light be refracted in specific regions in order to create an image. Figuring out a way to do this for a moving image, especially at a high framerate, would be difficult. I hope that one day technology advances to a point where I can see this happen.

  13. Welding, as most people know, is when you use a torch to melt a material to another material, as well as add some filler material for strength. However, there are a lot of different welds that can be made, and a lot of different ways you can make them. For example, some common types of energy sources for welding include a gas flame, lasers, electric arcs, electron beams, ultrasound, and friction. For the purpose of this post, I'll be talking about laser welding, since it is newer, and involves lasers which are just inherently cool. Welding using a laser beam consists of a concentrated laser beam, which provides a lot of energy making a weld fast, deep, and within a small area. Because of the extreme heat of the laser, however, some materials can be prone to cracking. It is also important to focus the laser properly, as the weld is the most effective when the focal point is just below the surface of the material being welded. Laser welding also has some advantages over electron beam welding, primarily that it can be done in air and is not required to be done in a vacuum, and does not produce x-rays. Welding is just one of those things you dont think about that much, and don't realize how important it is to so many every day things, and it is really cool that innovations are still being made in welding to adapt new technologies, such as lasers, into a hundred year old proscess. 


  14. SJamison
    Latest Entry

    Through photon camp in which I attended last year there was a lot of talk about lasers. This is because while using optics you can do a lot with lasers this is because you are easily able to manipulate them. The three things that all lasers have are an energy source, a medium and a resonator. The energy source or source pump is used to provide the laser with the energy that it needs to be powered. The medium is what really separates lasers because it determines the strength of the laser or the power that it has. And the optics are used to adjust and fine tune the beam. Lasers are cool because that have a variety of uses: cutting, welding, drilling, and marking. They are very good sources of light that are easy to manipulate and have endless uses.

  15. Not that long ago I came up with a fun project idea when I was bored. I had some spare speakers laying around and felt like a fun thing to do would to add them to my current speaker system to help fill the room with sound better. To do this I drilled small holes in the back of my current computer speakers and then connected some wire in parallel, I then ran this wire through the ceiling and then soldered the leads to the speakers. By connecting them in parallel I reduced the resistance of the circuit but I also increased the current, thanks Ohms law! I thought this was all good, but then my dad brought up a good point, would the increase in current cause the amp in the speakers to blow. To my luck it seems like it all worked out fine as a few weeks later the speakers are working just as they were before. Another bit of physics that helped me in this project is magnetism. At the back of all speakers there is a sizable magnet used to vibrate the membrane and create the frequency of the music.  I used this magnet as a form of mounting, I have ceiling tiles in this room so I just stuck the speakers to the ceiling where the metal was in the ceiling and I was done!

  16. jwdiehl88
    Latest Entry

    A simple snap-back mousetrap is a clever machine. With just a few parts (a wooden base, a spring, a metal bar, and a trigger mechanism) it can do its job quickly and efficiently.  When a mousetrap is set, the spring in the center is compressed, becoming a source full of potential energy. This energy is being stored, not used, but as soon as the trap is released, it is converted to kinetic energy (the energy of motion) that propels the snapper arm forward.  This is a perfect example of conservation of energy.  It takes an amount of force to set the mousetrap and when the trap is triggered, it creates a force onto the mouse that triggered it.  

    the levers of a mousetrap

  17. In high school physics we've always been told that test will try to trick you. They'll ask if a 10kg person goes from the earth to the moon how will their mass change. And the answer is always it doesn't. Mass doesn't change, mass doesn't change, mass doesn't change. It's been hammered into our brains. But it's a lie. So the speed of light in a vacuum is 300,000 km/s. This is the fastest speed any object in the universe can travel at. So what happens if you try to accelerate an object going the speed of light? Well picture this: a rocket accelerate to the speed of light, but the thrusters are still pushing on the rocket. You might be tempted to say that the frictional force balances with the thrust of the rocket, so there's no net force. But then how would the rocket have accelerated to the speed of light? There must be a net force. Given that there is a net force, work is being done on the rocket. Therefore, there is a change in kinetic energy, but velocity isn't increasing. That means the other component of kinetic energy must be increasing: mass. In most cases mass is a constant, but when energy cannot be transferred into speed any longer, it has to be transferred into mass instead. 

  18. Sampapaleo12
    Latest Entry

    Double domino's are relatively hard to explain so you should watch the video to get a good idea of what it is. 

    This is possible because the bricks are very wide. when the bricks fall, they lay on top of the one before it. the last brick in the sequence does not have anything to lay on so it falls to the floor. this causes the brick that is laying on it to fall as well and the next brick to fall and so on. This happens only when the bricks are placed a certain distance away from each other. this distance cant be too close or the bricks will just rest on top of each other. this distance also cant be too far away or the bricks will lay flat on the floor after hitting. Untitled.thumb.png.ba95da2ff1d630a31fa1bd6d9466c4c2.png

  19. A couple days ago, a Swiss skier named Andri Ragettli landed the first ever 'Quad Cork 1800', in which he flew 38 yards off of a jump in Italy, making five full rotations and four head-under-body spins. The video of the jump is attached below. The true difficulty of landing such a trick is very clear when considering the physics behind it. First, in order to be in the air long enough to perform such a trick, a skier needs to gain a great amount of kinetic energy as he descends from the top of the hill. In order to do this, the height of the top of the hill should be maximized so as to maximize gravitational potential energy, which is then converted into kinetic energy as the skier descends. Additionally, once Ragettli is in the air, you may notice that he crouches down low, which minimizes the rotational inertia of his body, allowing him to experience a more rapid angular acceleration. After Ragettli rotates multiple times in mid air, just before landing, he straightens his body, which increases his rotational inertia. Since angular momentum is conserved, an increasing rotational inertia causes a decreasing angular speed. Therefore, by straightening his body, his angular speed decreases, making it easier to stick the landing.




  20. Not long ago I acquired a Playstation VR (PSVR) which I set up in my basement office, and was asked to evaluate the system for potential educational applications.  Beyond that, my scope was wide open, though I was provided the opportunity to sample a variety of games on the system to get a feel for the potential of the system.  What follows are some general ramblings and thoughts about the system.

    The Hardware

    Playstation VR Headset and Camera

    Playstation VR Headset and Camera

    The tested system included a Playstation Pro console, a PSVR Launch Bundle (headset, two move controllers, camera, and appropriate cables), and external Playstation Gold headphones in place of the standard earbuds.  Included software included a Demo Disk, and Playstation VR Worlds Disk, and I utilized a store credit to try out several system games of my choosing.

    First Impressions

    Initially, I was somewhat disappointed in the resolution of the headset.  Though I had been forewarned that resolution wouldn’t be as sharp as an HD monitor, I was initially taken aback at the poor quality of the Playstation’s Main Menu rendering and the level of color aliasing I was seeing, especially in white text.  With 20/20 vision following Laser PRK corrective eye surgery nearly 20 years ago, this was a bit of a shock to the system that provided some initial disappointment.  I quickly found out, however, that this effect is especially bad in the Playstation Main Menu, and is not indicative of the system’s performance as a whole.  Further, with some time in the system, I found that placing the headset a touch lower over my nose (lower PSVR screens, higher eyes) improved sharpness considerably.  Still, though, after nearly 20 hours using the system, I would say the resolution of the system is adequate, but with substantial room for improvement in the future.

    From an immersion standpoint, however, I was blown away.  After about two minutes in my first simulation, the VR Worlds “Ocean Descent” program, I was having a blast descending in a shark cage through the ocean.  It’s hard to convey just how immersive it is, as I swiveled my head back and forth, leaned forward over the bars of the cage to look down, and eventually jumped through my seat when a shark ran into the cage.  Further, the resolution concern quickly evaporates in actual gameplay.

    From a comfort standpoint, I found the headband that holds the PSVR a bit tight, but fairly well balanced.  You don’t feel as though there is a weight on your head, and the over-the-ear headphones are a huge improvement over the included earbuds, though it is a bit of a trick to figure out how to put the PSVR headset on, followed by the earmuff-like headphones.  The cabling is a bit tricky to figure out while you are looking into the VR headset, but after a couple tries, you get a system down pretty easily.  The only lingering concern I had with the headset involved rubber nose flaps that push against the outside of your nose.  Try as I might, I couldn’t find a way to make them comfortable, and they pushed just enough on the outside of my nose that breathing was slightly impeded.  Just recently I finally decided to cut them off altogether with scissors, and am absolutely thrilled with the improvement in comfort.

    One of the primary concerns with VR systems is the potential for nausea / motion sickness.  VR systems are so immersive that they trick your brain into thinking it’s moving, which may be in opposition to your other senses, leading to motion sickness.  I didn’t have any trouble with the Ocean Descent demo, though the first time I tried the “London Heist” demo, also on the Playstation VR Worlds Disk, a car chase scene had me feeling a little bit ‘off.’  I never became overly ill, but I was also careful to discontinue use of the PSVR anytime I began to feel the least bit queasy.  Other activities that led to queasiness included Driveclub VR (regular driving was OK, but spinning out upon collision forced me to quit immediately), and a few circumstances when the dog came between me and the camera during a game, in which tracking was lost and the PSVR displayed weird motions that weren’t accompanied by my head movements.  It has been reported by many that over time the motion sickness effect lessens as your brain becomes accustomed to the VR system.  My experience was consistent with these reports.  Finally, I found upon removing the nose flaps my breathing improves, I remained cooler during use of the system, and that also appears to have contributed to reduced nausea.  I should note here that another ‘trick’ to improving comfort levels is to have a fan blowing on your face while using the PSVR system.  I tried this recently as well and found it a nice enhancement.


    The immersion level in PSVR, from my standpoint, is amazing.  After you get over the “wow” factor in a game or simulation, you quickly begin to feel as if you are really there.  The surround sound headphones coupled with the extremely smooth tracking truly give you the feeling of being there.  The PSVR does appear to have an issue with drift over time, where the center focus area of your screen can lead you to looking off-center.  A button on the controller can be held to re-center the system, an act that becomes second nature over time, and at regular intervals I find myself closing my eyes and relaxing for a second while pressing the button, then re-opening my eyes to a fully re-centered view.

    My most-recent PSVR expedition found me attempting the first AAA game release, Resident Evil 7: Biohazard, completely in VR.  To begin with, the shortcomings of the graphics system previously detailed is nearly non-existent in this game, which leads me to believe many of my graphics concerns can be mitigated by software.  I should also note that I’m not typically a horror fan, though I do recall playing a Resident Evil game on a Playstation some 20-ish years ago.  To say this game induced an emotional response is an extreme understatement.  Though there are several “jump scares” throughout the game, this title doesn’t rely on them, and instead does a fantastic job of creating an environment of suspense and foreboding using the PSVR hardware.  You truly feel like you’re there, and I’m not ashamed to admit I nearly had to purchase new drawers when I was playing the game one evening and the dog jumped on my lap at an inopportune time.

    With the goal of finishing a report on immersion by the end of February, I wanted to work through this entire game by mid-February, which totaled roughly 10 hours of in-game time.  Though I experienced one technical hiccup which required a reboot of the entire system, I completed the adventure yesterday.  I could continue talking about my thoughts on immersion, but I believe my habits around using the PSVR to play RE7 tell it all… after the first night, I told my wife I couldn’t play this after the kids went to bed… it was too creepy.  Instead I tried to sneak in an hour after dinner, or on weekend afternoons.  The immersion level is just that high.


    Following this trial (which I’ll be continuing for some time), I’m now a believer that there are tremendous opportunities for the use of VR in education.  Though I don’t see this as a popular “in-class” tool in standard high school settings due to the cost/complexity/infrastructure required, I do think as an individual tool some amazing things could be accomplished.

    Imagine a history class in which students don’t just read about the Battle of Gettysburg, but actually get to “live it” from various perspectives.  Envision a biology lesson in which you are miniaturized and travel through the bloodstream to various organs, seeing the operation of the heart from the inside (remember Inner Space, anyone?)  Or a virtual dissection for biology and anatomy classes.  Picture the ability to explore a nuclear reactor from the inside, with the ability to zoom in and ‘view’ the actual chemical and physical reactions as they occur, or traveling through a circuit as an electron.  Imagine viewing a surgical procedure from the standpoint of the operating physician!  You could explore the universe at will, or dive into the geology of the Earth from the inside.  The possibilities are limitless, though I imagine tools to build such simulations must evolve to the point that content instructors have content creation and distribution tools that will make the learning curve for such projects reasonably accessible.  I haven’t investigated this in-depth, but I would believe that such accessibility is a ways off, but getting closer every day.

    Though not quite as immersive, I can also envision the use of this technology for distance learning courses, though there are challenges for this as well.  I imagine streaming or recording classes in a VR-friendly format may not be way off, but appropriate application will take significant further thought.  “Sitting in” on an MIT lecture and demonstration may be possible, but is it a significantly more engaging experience than a two-dimensional video cast of the course?  Would the VR technology and headset make note-taking and student work while participating in the class too restrictive?  What tools and interactivity would make this a positive leap in learning vs. a play area where the complexity overcomes the educational benefits?  It is extremely early, but I look forward to seeing how such amazing technology is utilized for purposes beyond just standard gaming.  And in the meantime, I’m having a blast not only trying out the technology, but envisioning potential applications for the future.

    • 1
    • 1
    • 347

    Recent Entries

    Physics can be applied to every aspect of swimming. Before even entering the water, swimmers model free fall and angled projectile motion as they dive off the starting blocks. U.S. Masters Swimming states that diving at a 45 degree angle maximizes the speed and distance of the dive. Competition suit brands, such as Speedo and Arena, have to be knowledgeable about the physics of water resistance in order to produce their extremely tight and specially-designed "Fastskins" that are known for helping swimmers achieve best times by strategically compressing their bodies to maximize speed and to minimize water resistance. However, the best examples of physics found in swimming are found when applying Newton's 1st, 2nd, and 3rd laws to the sport.

    Newton's 1st Law states that an object at rest tends to stay at rest and an object in motion tends to stay in motion, at constant velocity and in a straight line, unless acted upon by a net force. It is also known as the Law of Inertia. When swimmers dive into the water, they hold themselves still in a horizontal streamline position for a few moments before starting their kick. Water resistance acts as the net force, which quickly begins to slow swimmers in streamline position. This is when they know to start kicking because, otherwise, the water will end up stopping them. Furthermore, taller and bigger swimmers have greater inertia, so their speed off the block and speed of flip turns are naturally slower. Nevertheless, larger swimmers are often stronger and therefore able to produce enough of a force to dive and turn quickly.

    Moving on, Newton's 2nd Law says that the net force on an objects is equal to its mass times its acceleration. The more force a swimmer can apply, the faster he/she will go. It is common, especially in longer events, to see swimmers start out strong, then slow down and start to look tired, and finally speed up at the end for a strong finish. As swimmers get tired, they begin to produce less force, thereby beginning to decelerate. Towards the end of a race, knowing they are in the home stretch and are going to be able to live to finish the event, swimmers muster enough force to accelerate. During practice, a common set is one involving descending times, which exhausts swimmers, since they have to increase the force they are applying to be able to accelerate.

    Finally, Newton's 3rd Law states that all forces come in pairs that are equal in magnitude and opposite in direction. It is commonly said as "for every action, there is an equal and opposite reaction." This law is the most obvious to observe when watching a swimmer. As the hand and arm push the water backwards, the water pushes forwards with a force that is of equal magnitude. This motion keeps the swimmer afloat and allows him or her to move forward in the water. Every stroke involves the swimmer pulling down and back in order to move up and forward.

    Clearly, physics is exemplified everywhere in the sport of swimming. Physics explains why certain stroke techniques are more effective and why some swimmers are faster than others. Even Michael Phelps' success can be credited to his expertise at applying Newton's first three laws to his sport. After reading this, maybe we will see you in Tokyo 2020 with the other great physicists who call themselves the USA Olympic Swim Team!

  21. No blog entries yet

    • 1
    • 2
    • 238

    Recent Entries

    Latest Entry

    My name is Nicole Waddington, as you probably figured out already. This fall I am on the Varsity Tennis team, but normally, I am a coxswain for Pittsford Crew on the varsity girls team. Now, you are probably asking yourself one of two questions. 1) What is a coxswain? or 2) Isn't that the person that yells "Row!" and sits in the boat? Answer to question #1: A coxswain is in charge of steering the boat, motivating the rowers, and a multitude of other things that you can probably find on Wikipedia. Answer to question #2: Kinda, coxswains don't just yell "Row"...unless you want to boat to move. But, our job can best be described as a person who corrects technique and steers the boat. I look forward to exploring the physics of rowing in later blog posts. I also have been playing the violin for 11 years. As far as careers, I have no clue what I want to do. I am taking physics because I really enjoyed AP Physics 1, have already taken AP Bio, and didn't want to take AP Chem. Physics was the first class that I took in the high school that truly challenged me and didn't come naturally which was refreshing. I'm really excited about challenging myself in this class, and also the freedom and independence this class has. Things I am nervous about this year are the difficulty of the content and heavy workload. 

    • 1
    • 1
    • 185

    Recent Entries

    Last Tuesday marked the first day of Physics C. After a long summer vacation and countless times emailing my counselor to either add or drop Physics C, I finally made up my mind to officially take Physics C. But before I get ahead of myself I want to let you know about my interests. I've been cheerleading all my life and I played softball for 8 years. I love watching Space Documentaries and even though science was never my strongest subject I thought it was always interesting so I decided to challenge myself. I'm aspiring to become an architect and hope to be attending Hampton University next fall. I've always been interested in engineering and how/why things work. I've decided to take Physics C because I enjoyed AP Physics 1 and this is the only science that I can apply to everyday life. After taking Physics 1 most of my conversations became Physics based so why not take Physics C. Plus Chemistry and Biology isn't really my thing. I hope to solidify what I learned last year but also expand my knowledge. I'm excited to challenge myself and learn how efficiently do all the work I need to do. However, I'm somewhat anxious for the work load and if I fall behind the class will crush me. But whatever the case may be I bet this will be the best class I have ever taken.


  • Recently Browsing   0 members

    No registered users viewing this page.