Jump to content

Blogs

Our community blogs

  1. etracey99
    Latest Entry

    Many of us know the Aurora Borealis as the 'Northern Lights'. This natural phenomenon is, of course, thanks to the physics of our Earth and its atmosphere!

    Topic of the moment - northern lights and solar wind(Photo credit: NASA)

    The Aurora Borealis is an extremely beautiful event that occurs most often close to the magnetic poles of Earth. It occurs due to charged particles coming from the Sun of which collide with other molecules found in the Earth's atmosphere. Solar winds from the Sun carry these charged particles and when the wind passes by Earth, particles may be trapped in the atmosphere from the Earth's magnetic fields! The charged particles ionize molecules in the atmosphere, which give off light. This creates the Aurora Borealis!

    I had previously thought that the Northern Lights were from light reflecting somehow, but it awesome to see that it is caused by magnetism, which fits into our past few units very nicely.

  2. I'd like to dedicate this blog post to the person who has gotten me through this year.  You know who you are.  Do you annoy me sometimes?  Absolutely.  Do I annoy you sometimes?  I sure hope so.  All jokes aside, we do make a good team.  We work well together because neither one of us is a follower.  We are both independent, which is helpful when one of us is missing something.  If you miss something, there's a good chance I caught it, and I'll point it out.  If I miss something, there's a good chance you caught it and you'll point it out.  We don't leave each other in the dark.  If one of us doesn't understand something, we explain it to each other until it makes sense.  If one of us is having a rough day or week, the other steps it up and does what they can to help make something more manageable.  Do we get of topic?  Let's not lie to ourselves, of course we do.  However, we also know when we really need to crack down and get a lot done.  It may have taken us awhile to get there, but we did.  We are close enough that we aren't afraid to tell each other to shut up and work when we need to.  We also aren't afraid to be wrong. We know that no one is perfect, especially in this class.  We don't judge each other for making a mistake, we know we'll make more and more, and that's okay.  Overall, you make things more enjoyable, even when I say you don't.  It was great to take on such a challenge with you and support each other along the way, while of course making lots of jokes.  I couldn't have asked for a better lab partner.  We're partners in crime (I mean physics). Thanks for a great year.

  3. This year, I really pushed myself with new challenges that were difficult, but also very rewarding. I took on the challenge of a flipped classroom and learned a new way to be a student that will help prepare me for college. While at times it was a struggle to keep up, this course kept helped me prepare for college by forcing me to work on my time management skills. I think that I have a lot more of improvement to do on this, but I have come a long way from the beginning of the year. I think before I go to college, it might be a good idea to review Dr. Chew's videos and brush up on some of the proper learning techniques that he taught. Another new thing that I took on this year was completing blog posts for this class. This activity taught me a lot of new things about how what we are learning in physics applies to the real world and I really appreciate all that I have learned. Going forward, I will have to apply the math and physics of the classroom to the real world, and doing the blog posts gave me a little bit of insight into the connections between the two. Although it may have been a challenge at times to complete the necessary blog post on time, I enjoyed learning new things about the world around me. 

  4. This year has been a wild ride, and the AP weeks are approaching fast. With the third quarter ending, and soon most AP classes to have not much work to do, I need to take the time to look back on this year. Physics was a struggle, but that made it a lot of fun. I have learned a lot, and have learned new was of how to learn based on the style and difficulty of a class. It was a great choice to make and it has really helped me to learn what is in store for the future at college. Calc didn't catch up to physics until it was toward the end of the second quarter, which made the  math fun, but that was a good learning opportunity as well. As the year slowly comes to an end I am happy but sad as this year has been rough, but I couldn't have asked for a better year to end on.

  5. Image result for mario kart wii rainbow road gif

    Mario Kart was (and still is) the greatest game of all time, and there is a surprising amount of physics involved – not the part about falling off the edge of rainbow road and then magically reappearing back on the track though.

    Mario Kart uses Newton’s laws. The use of Newton’s first law proves why in order to get moving you have to press a button to accelerate, and when you let your finger off the button, you don’t just automatically stop, you just slow down. Newton’s second law shows how if you use a cart with a greater mass, you need a greater force to get the kart moving with the same acceleration.

    Mario Kart also uses elastic and inelastic collisions. An elastic collision occurs when two karts run into each other. They both don’t stick together following the collision, but they bounce away from each other. An inelastic collision occurs when two karts collide and the one with the thunder colt transfers to the other kart and now the thunder cloud is stuck to the other kart.

    While Mario Kart is mostly fictional – with flying blue shells, mystery boxes, and magically coming back to life after falling off into vast darkness – there is still a lot of subtle physics involved.

  6. Image result for logic gate chip

     

    Have you ever wondered how systems around you function? Like a passing glance at the thermostat and wonder how it maintains the temperature in your house. Well, just like any other system dealing with variables, there has to be logic to tell how other systems should work. In electrical systems, one of the most basic forms of logic comes through chips known as logic gates.

     

    These gates appear on chips, like the one below, where each prong serves a certain purpose. These chips can vary in size, holding a number of gates, but for our purposes, we will look at one with only four.

     

    5acc19ca4eca2_NANDChip.png.0b2955263ffdfbf5a084a07a9c6f8613.png

    VDD represents a pin needing to be connected to a voltage source, usually five volts, and Gnd means the pin needs to be connected to ground. The input pins follow the two paths leading into the same end of a gate, while the outputs are represented through single paths. This specific chip is made up of NAND gates which is shown by the shape the pathways lead into and out of.

     

    The main types of gates are referred to as “and”, “or”, and “not”. These gates then have multiple variations I'll discuss below, but these are the basics. Now, how does a circuit relate to logic, I hear you ask. Well, for simplicity, let's assume a circuit either has a voltage of zero or five volts. The zero volts is represented with a 0 and the five volts is represented with a 1. These signals go into a gate, converting it into a designated signal (also a 0 or a 1), used to cause another action.  

    Below is a table showing the input and corresponding outputs of each gate.

    01249x02.png

    An example would be if I had two inputs, one in the form of a switch and another in the form of a light sensor. I want my cabin to turn it's lights if I hit my switch and it is night time out. When I turn my switch on it sends out a 1. When the sun goes down the light sensor sends out a 1. When both these signals reach an and gate it sends out a 1 to the light inside my house to turn on.

     

    Needless to say, there are systems with hundreds, even thousands, of variables and programmable logic controllers can store strings of gates onto one single chip, but that's a story for another time.

     

    As always thanks for reading! - ThePeculiarParticle

  7. Mechanical waves move through matter as a medium and as such many of the natural laws that pertain to motion and dynamics have special places in the study of mechanical waves. One type of wave is sound which most easily propagates through air however because of the laws of momentum one could expect that a mechanical wave is maintained through any matter. A solid barrier for example would be so rigid that it would absorb the impact of a wave and impede passage slightly beyond the barrier. This would produce a sound shadow where the sound loses its momentum in passage through the solid. 

    Anyways this is the last blog post. Thanks FizziksGuy, even in the darkest of nights, you were by my side all along, my true mentor,

    Related image

  8. Electricity is cool. Electricity travelling through air is cooler. Well, it looks cooler at least. It's actually really hot.

    Jacob's Ladders are neat little devices that send a roughly-horizontal electrical arc travelling upward between two electrodes.

    Jacobs_Ladder_HM.thumb.jpg.674492048434253c7289039ee53c0f81.jpg

    Source: https://en.wikipedia.org/wiki/Spark_gap#Visual_entertainment

    This is a long exposure picture of a Jacob's Ladder - there's actually only one arc at any given time.

    The mechanism behind the ladder effect is actually pretty simple. When the arc initially forms, it heats the air up quite a bit, as is evident from the glow it produces. This hot air has more energy, so it expands, which decreases its density relative to the air around it. Since it's less dense, it experiences a buoyant force upward, and since the electrons can more freely travel through already-ionized air, the arc follows the hot air upwards. Once the arc reaches a length at which it can't keep the air hot enough to remain ionized, the arc breaks apart and the path of least resistance returns to being the very base of the ladder, so the process repeats.

  9. BrandyBoy72
    Latest Entry

    This is an example of how magnets can be used for levitation, or hovering if you will. All this is, is simply the force of the magnet overcoming the force of gravity of the magnet and the liquid. In this way, a "hover board" would be nothing other than a force keeping something off the ground, which is just what a normal force is when you have an object sitting on the floor. However, using magnets for levitation is cool because you cannot see the force acting on the object, and the force can also be transferred through things, putting your hand between something being levitated by a magnet would not stop the magnetic repulsion, which is pretty cool to think about and even cooler to see.

  10. The gold foil experiment is the famous experiment conducted by Ernest Rutherford that we all learned about in chemistry class. This experiment proved that atoms are made up of mostly empty space. In fact 99.9999% of an atom was proven in this experiment to be empty space. Lets say we could eliminate all that empty space by condensing the parts of an atom together. How much weight could we fit in a small space such as a single teaspoon? Over a billion tons! 

    This idea is common when studying astronomy. At the end of a stars life, it collapses and explodes in a supernova explosion. The remaining mass that the supernova leaves over is so dense that the star begins to collapse in on itself. As a result of this, electrons fall into the nucleus and smash into protons becoming neutrons; hence the name neutron star.

    This animation shows a star going through a supernova explosion. The accuracy of this animation is highly questionable but it certainly looks cool.

    giphy.gif

    image.png

  11.  Image result for batman dead 

    Batman should be dead. Rate 5 stars and I'll tell you why. 

     

     

     

     

    I'm waiting....

     

     

     

     

    Okay cool thanks. Just kidding. It's because of his cape!

    Image result for batman leaping off skyscraper

    Do you really think batman would be able to survive a leap off of a skyscraper? Let's find out. A group of students from the University of Leicester did an actual experiment using mathematical simulations. They give a wingspan estimate of 15 feet. An average skyscraper is 492 feet high. When an electrical charge is sent through batman's cape in Batman Begins, it turns into a rigid glider. It was calculated that he would travel a total distance of 1,148 feet. That's cool and all, but how would he land? What speed would he reach? The students calculated that he'd reach a top speed of 68 mph, and land at 50 mph. If you think he'll be okay, the  students reason that you should "consider impact with a car traveling at these speeds." New movie idea: Batman is the new Flat Stanley. 

  12. crazycrochet20
    Latest Entry

    At the end of last quarter, I wrote a blog post about how I needed to change a few things because of the disaster that had come about in all my classes but especially physics. I feel that over the course of the past 10 weeks, I have changed the way that I learn and study. I find that I am more focused to get things done and understand them in a timely manner. I use all of the time given to me efficiently as well. Before this quarter, I found myself wasting class time and not doing the work that I needed to do in order to understand the content.

    Now that the learning is almost done for most classes and we move into the studying for exams during the last quarter, I need to remember the success that I have had during this quarter and continue it on. I know I can do it. We are now in the final stretch of high school and I am ready for it all. 

    Until next time,

    RK

  13. Last week I made a blog post about how muzzle brakes on a firearm help reduce vertical recoil by venting the pressurized gas horizontally outside the barrel. But that still leaves the question as why vertical recoil still occurs. Obviously it isn't perfect, but human error can't be the only factor to why firing a gun lifts the barrel upwards.

    Funnily enough, we've actually talked about this in class. It's just a simple torque diagram.

    Firearms are designed with the grip of the gun placed below the barrel. Because of this, whenever the gun is fired, the force pushing the firearm back along the length of the barrel causes the entire system to rotate.

    5aa0080e5ed48_TorqueDiagram.png.a8a5b6032407ca421cba83253ffb08cf.png PSA: Don't put your finger in the trigger guard unless you intend to fire

    Some companies have improved this by raising the grip very close to the barrel, which does help to reduce recoil, but they can only get it so close. Theoretically, if you were to hold a gun with your hand directly behind  the barrel, then vertical recoil would not be much of an issue... But aiming would. Notice how Iron Man doesn't have to worry about vertical recoil.

    Placing the stock of a firearm against your shoulder does  help prevent vertical recoil, but, once again, it isn't perfect. Typically, weapons with stocks on them also fire more powerful rounds, meaning that the force is larger, which also means that the torque is larger, making vertical recoil even larger.

  14. Time for a little mental health rant…

    We all want our children to be the best they can be, to feel good about themselves, and to reach their potential. Part of this process, however, involves learning to fail productively — understanding and experiencing what it’s like to fall short, knowing that sick feeling in your gut is uncomfortable but necessary, and disliking that feeling enough to do something about it and try again.

    I sure hope I’m wrong, but I feel like many of the changes I’m seeing in the way we as a society deal with children is sending the wrong message. These changes are made with the best of intentions — we don’t want anyone to feel left out, and we don’t want children to experience the pain of failure — but we as adults who know better need to recognize that these uncomfortable experiences are important to building up confidence, self esteem, and independence. Kudos that aren’t truly earned don’t teach a child to work hard, they teach a child that showing up is enough.

    I’m not saying little ones need to be beaten into submission, or that I should always crush my kid in a game of Connect Four — but I do think they need to learn that they can’t win every time, otherwise there’s no impetus to improve. They won’t always get picked first to be on a team, there will be days when they are left out of activities their friends get to experience, and there will be events when they’ll leave the field and not be the winner of the event. This is OK, it’s an opportunity learn the importance of giving your all, of preparing as fully as possible, and the value of sportsmanship, both on top and at the bottom of the podium.

    I think it’s also important for our kids to understand what makes us proud and what is disappointing. Sportsmanship is important, but it’s also important to realize that decisions leading up to events contribute to the success or failure of that event. As a teacher I observe students who work their tail off and struggle for a middling grade… and I try to instill a sense of pride in that work and that grade. I also have students who slack off and are naturally talented enough to earn A’s. I try to explain to these students that they are not reaching their potential, and I don’t find that acceptable. There will be times when our kids may try and try and try, but never reach the level of success that they desire. Recently I’ve dealt with repeated instances of academic dishonesty, from students who are taking shortcuts in their classes, and aren’t recognizing the connection between their integrity, work ethic, and results.

    True self esteem and confidence comes from understanding that you can go to bed every night with no regrets, having given your all, not from an external source such as a trophy or a piece of paper with a letter on it. And not meeting every goal just tells you that you’ve set aggressive goals. If you reach every one of your goals, you’re not reaching high enough.

    I don’t think it’s valuable to get into specifics, as you can find “opportunity for improvement” in so many of the things we do and say with our kids, from the toddlers to the older young-at-heart — in our homes, in our schools, and in our activities. But I would ask, if some of this does resonate with you, to take a step back and look at what changes you can make, or ways you can support and reinforce those who are instilling these old-fashioned values. And don’t be afraid to speak up every now and then and question what you see occurring.

    Just because someone thinks it’ll make everyone feel better, doesn’t mean it’s a good idea. And just like our mothers taught us, popular opinion doesn’t mean it’s the right opinion. Remember the old adage “if all your friends jumped off a bridge would you jump off too?” It’s time for all of us to start thinking for ourselves.

    The post Failure is Necessary for Growth appeared first on Physics In Flux.

    QBw1gInz-Pk

  15. SJamison
    Latest Entry

    Elon Musk is a god! 

  16. A partial derivative uses this nice formula. (f)/(x), where f:R^2->R is lim h->0 (f(x+h,y)-f(x,y))/h. Physics is everywhere, waiting, watching. 

  17. Hey y'all,

    Chris, a student at Cornell, wakes up at 8:59am for his 9:05 class. If the class is 1.5 km away, at what constant velocity does he need to travel in order to make it to class at 9:05? Neglect air resistance.

    • 1
      entry
    • 1
      comment
    • 273
      views

    Recent Entries

    Recently in an MLB game a fan was struck by a foul ball. This person was severely injured from the baseball. My initial question was why didn't this person just move out of the way. Well, easier said than done. An official league baseball has a mass of .145 kg, and the average velocity of a major league fastball is 40.3 m/s. this means that when the ball hits the bat, if the batter perfectly squares up the baseball, the ball can leave the bat at approximately 49 m/s which is equivalent to 110 mph. The individual that was hit by the ball was on the third base side, first row. This means that there was a distance of 50 meters between the batter and the person hit. The time it took for the ball to reach the fan was 0.92 seconds. Would you be able to react that fast?

     

  18. madyrice419
    Latest Entry

    I was scrolling through Instagram and found this hilarious meme of someone's Tinder profile. It reminded me of earlier this week when Mr. Fullerton said that if a girl had the quadratic formula tattooed on her forehead, she wouldn't get a date. I guess nerds don't need love. Anyways, I entitled this blog "Dying" because, first of all, that meme made me die of laughter and, second of all, the first AP Physics C test killed me. With reflection I realized that this year is going to be a lot harder than I even first anticipated. I am not the smartest student on Earth, but I have an ambition and unwavering optimism in everything I do. Seeing that I "failed" a test really killed my spirits, and I am hoping that this class will not be the death of me. But deep down I know I can do it. AND YOU CAN TOO. We've just got to keep up with the work and keep trying. I learned that if I get slapped in the face by physics problems, I need to slap them back twice as hard. 

    meme.png

  19. Dr. Chew was very helpful in giving me strategies for studying. I have turned in my questions to the videos on a separate sheet of paper in class. 

    • 1
      entry
    • 2
      comments
    • 269
      views

    Recent Entries

    baseball00
    Latest Entry

    I am a student at IHS. As I dive into my senior year I hope to discover new opportunities and interests. I play baseball in the spring and summer. During my free time I like to watch sports or read; however, one of my greatest interests has always been science. I am taking AP physics C this year to further my understanding of the universe. I always knew I liked science, but taking AP physics 1 last year helped me find out that I have a specific passion for physics. In the future I would like to continue my interest in physics by taking it in college and having a career in the engineering field. This year in physics I would like to become more skillful in becoming self taught. This will give me opportunities to become a more innovative person. This year I am most excited about the independence that comes with being a senior. I am anxious for my college research process to come to an end so I can finally apply to the schools and decide where I want to go.

  20. Hey Mr. Fullerton and anyone whos reading this, its been a pleasure grinding this year. Hope you enjoy this great video and maybe even chuckle a bit. 

     

  21. Launch Time: 10:37 am

    Team Members Present: Jason Stack, Marcus Nicholas and Michael Kennedy were all present for this launch.

    Play-by-Play: Initially the rocket was created using the parts listed in the pre-flight briefing. The rocket was launched from Kerbin and angled in order to successfully travel outside of Kerbin's atmosphere. The rocket was then directed into orbit around Kerbin. Kerbin was orbited a few times. The rocket was then returned back to Kerbin by using a maneuver that brought the rocket back into Kerbin's atmosphere. The bottom engines were released, then the second engines, leaving only the pod left. The pod descended to 1,000 meters above Kerbin and then the parachute was deployed. The pod landed safely on Kerbin. 
     

    Photographs: dsd.pngdsds.pngscreenshot0.pngscreenshot11.pngscreenshot12.pngscreenshot2.pngscreenshot3.pngscreenshot4.pngscreenshot5.pngscreenshot6.pngscreenshot8.pngscreenshot9.png

    Time-of-Flight: 4 hours and 5 minutes

    Summary: Our flight was a great success. We planned to accomplish all initial milestones, including a successful manned orbit and a successful Kerbal EVA. All of these desired milestones were accomplished. Our spaceship and Kerbal manning the ship returned safely to Kerbin after successfully reaching orbit around Kerbin. By reaching a manned orbit around Kerbin, all the initial milestones were accomplished by this launch. 

    Opportunities / Learnings: Establishing what the launch goals are and designing the rocket accordingly is very important. Failure to do so will result in an inability to accomplish any milestones.

    Strategies / Project Timeline: After this accomplishment, our next goal is to reach orbit around the moon and land on the moon. 

    Milestone Awards Presented: 

    • Launch to 10 km - $10,000
    • Manned launch to 10 km - $20,000
    • Manned launch to 50 km - $30,000
    • Achieving stable orbit - $40,000
    • Achieving stable manned orbit - $50,000
    • First Kerbal EVA - $60,000

    Available Funds: $257,818

    • 31
      entries
    • 20
      comments
    • 1157
      views

    Recent Entries

    jrwalther
    Latest Entry

    This week I focused on chapter 5 in Mechanics.   This included momentum and impulse, conservation of linear momentum and center of mass.

    Areas that went well for me were momentum and impulse and conservation of linear momentum.  What helped me to really understand these two topics were first understand the graphs that went along with them.  This included Force vs. Time graphs showing the impulse to be the area under it.  These graphs gave me a better understanding of what I was solving for when I got to problems.

    Center of mass was the topic I had the most difficulty with.  However plotting the points on a graph helped me with this as well.  The equation Xcm= (m1x1+m2x2).../m1+m2... really helped me understand finding the center of mass of different points.  Finding it for other objects such as rods however was still quite challenging.

    My major key to success this week was working more with graphs.  Once I understood graphs whether it be just plotting point or graphs such as Force vs. Time, they all helped me get a better understanding of the topic I was working on.   

  22. NisaVyv
    Latest Entry

    Not many people put a whole lot of thought into what their morning cereal is made of. Most people would just assume there's some grain and maybe a little sugar, or a lot of sugar if you're more of a Lucky Charms person than a Raisin Bran person. Nobody would suspect, though, that there would be metal in their Cheerios. Turns out, Cheerios are magnetic. Or are they?

    Fill a bowl with water and drop in a couple Cheerios. Take a magnet and hold it just above the Cheerios, the Cheerio will be attracted toward the direction of the magnet. Why is this? If the little cereal ring is magnetic, then there must be metal fragments in it causing the attraction. Now the cereal is all magnetic, and it does contain tiny fragment of iron. This is perfectly reasonable though, as iron is a key nutrient in a human diet. But that's not the whole story, 

    If you were to try this with objects other than cereal, say a small piece of paper or plastic, it would still seem to be attracted to the magnet as it floated in the water. The "attraction" you see is actually all about water, which is diamagnetic, meaning it generates a magnetic field opposite to that of the magnetic field it is in the presence of. Thus, the water is slightly repelled by the magnet. This causes a slight divot in the water, that the object in the bowl actually falls into, making it appear to follow the magnet. In actuality, it isn't being affected directly by the magnetic field, but by the waters reaction to the magnetic field.

  • Recently Browsing   0 members

    No registered users viewing this page.

Terms of Use

The pages of APlusPhysics.com, Physics in Action podcasts, and other online media at this site are made available as a service to physics students, instructors, and others. Their use is encouraged and is free of charge. Teachers who wish to use materials either in a classroom demonstration format or as part of an interactive activity/lesson are granted permission (and encouraged) to do so. Linking to information on this site is allowed and encouraged, but content from APlusPhysics may not be made available elsewhere on the Internet without the author's written permission.

Copyright Notice

APlusPhysics.com, Silly Beagle Productions and Physics In Action materials are copyright protected and the author restricts their use to online usage through a live internet connection. Any downloading of files to other storage devices (hard drives, web servers, school servers, CDs, etc.) with the exception of Physics In Action podcast episodes is prohibited. The use of images, text and animations in other projects (including non-profit endeavors) is also prohibited. Requests for permission to use such material on other projects may be submitted in writing to info@aplusphysics.com. Licensing of the content of APlusPhysics.com for other uses may be considered in the future.

×